def process_image(self, line, data_dir, mode): """ process_image """ img1, img2, grt1, grt2, img1_name, img2_name, grt1_name, grt2_name = self.load_image( line, data_dir, mode=mode) grt1 = grt1 + 1 if grt1 is not None else None if mode == ModelPhase.TRAIN: img1, img2, grt1, grt2 = aug.resize(img1, img2, grt1, grt2, mode) img1, img2, grt1, grt2 = aug.rand_crop( img1, img2, grt1, grt2, mode=mode) if cfg.AUG.RICH_CROP.ENABLE: if cfg.AUG.RICH_CROP.BLUR: if cfg.AUG.RICH_CROP.BLUR_RATIO <= 0: n = 0 elif cfg.AUG.RICH_CROP.BLUR_RATIO >= 1: n = 1 else: n = int(1.0 / cfg.AUG.RICH_CROP.BLUR_RATIO) if n > 0: if np.random.randint(0, n) == 0: radius = np.random.randint(3, 10) if radius % 2 != 1: radius = radius + 1 if radius > 9: radius = 9 img1 = cv2.GaussianBlur(img1, (radius, radius), 0, 0) if img2 is not None: img2 = cv2.GaussianBlur(img2, (radius, radius), 0, 0) img1, img2, grt1, grt2 = aug.random_rotation( img1, img2, grt1, grt2, rich_crop_max_rotation=cfg.AUG.RICH_CROP.MAX_ROTATION, mean_value=cfg.DATASET.PADDING_VALUE) img1, img2, grt1, grt2 = aug.rand_scale_aspect( img1, img2, grt1, grt2, rich_crop_min_scale=cfg.AUG.RICH_CROP.MIN_AREA_RATIO, rich_crop_aspect_ratio=cfg.AUG.RICH_CROP.ASPECT_RATIO) img1, img2 = aug.hsv_color_jitter( img1, img2, brightness_jitter_ratio=cfg.AUG.RICH_CROP. BRIGHTNESS_JITTER_RATIO, saturation_jitter_ratio=cfg.AUG.RICH_CROP. SATURATION_JITTER_RATIO, contrast_jitter_ratio=cfg.AUG.RICH_CROP. CONTRAST_JITTER_RATIO) if cfg.AUG.RANDOM_ROTATION90: rot_k = np.random.randint(0, 4) img1 = np.rot90(img1, k=rot_k) img2 = np.rot90(img2, k=rot_k) if img2 is not None else None grt1 = np.rot90(grt1, k=rot_k) grt2 = np.rot90(grt2, k=rot_k) if grt2 is not None else None if cfg.AUG.FLIP: if cfg.AUG.FLIP_RATIO <= 0: n = 0 elif cfg.AUG.FLIP_RATIO >= 1: n = 1 else: n = int(1.0 / cfg.AUG.FLIP_RATIO) if n > 0: if np.random.randint(0, n) == 0: img1 = img1[::-1, :, :] img2 = img2[::-1, :, :] if img2 is not None else None grt1 = grt1[::-1, :] grt2 = grt2[::-1, :] if grt2 is not None else None if cfg.AUG.MIRROR: if np.random.randint(0, 2) == 1: img1 = img1[:, ::-1, :] img2 = img2[:, ::-1, :] if img2 is not None else None grt1 = grt1[:, ::-1] grt2 = grt2[:, ::-1] if grt2 is not None else None elif ModelPhase.is_eval(mode): img1, img2, grt1, grt2 = aug.resize( img1, img2, grt1, grt2, mode=mode) img1, img2, grt1, grt2 = aug.rand_crop( img1, img2, grt1, grt2, mode=mode) if cfg.TEST.TEST_AUG: img1 = self.test_aug(img1) img2 = self.test_aug(img2) if img2 is not None else None elif ModelPhase.is_visual(mode): org_shape = [img1.shape[0], img1.shape[1]] img1, img2, grt1, grt2 = aug.resize( img1, img2, grt1, grt2, mode=mode) valid_shape = [img1.shape[0], img1.shape[1]] img1, img2, grt1, grt2 = aug.rand_crop( img1, img2, grt1, grt2, mode=mode) else: raise ValueError("Dataset mode={} Error!".format(mode)) # Normalize image img1 = self.normalize_image(img1) img2 = self.normalize_image(img2) if img2 is not None else None if grt2 is not None: grt = grt1 * cfg.DATASET.NUM_CLASSES + grt2 unchange_idx = np.where((grt1 - grt2) == 0) grt[unchange_idx] = 0 if cfg.DATASET.NUM_CLASSES == 2: grt[np.where(grt != 0)] = 1 ignore_idx = np.where((grt1 == cfg.DATASET.IGNORE_INDEX) | (grt2 == cfg.DATASET.IGNORE_INDEX)) grt[ignore_idx] = cfg.DATASET.IGNORE_INDEX else: grt = grt1 if ModelPhase.is_train(mode) or ModelPhase.is_eval(mode): grt = np.expand_dims(np.array(grt).astype('int32'), axis=0) ignore = (grt != cfg.DATASET.IGNORE_INDEX).astype('int32') if cfg.DATASET.INPUT_IMAGE_NUM == 1: if ModelPhase.is_train(mode): return (img1, grt, ignore) elif ModelPhase.is_eval(mode): return (img1, grt, ignore) elif ModelPhase.is_visual(mode): return (img1, grt, img1_name, valid_shape, org_shape) else: if ModelPhase.is_train(mode): return (img1, img2, grt, ignore) elif ModelPhase.is_eval(mode): return (img1, img2, grt, ignore) elif ModelPhase.is_visual(mode): return (img1, img2, grt, img1_name, img2_name, valid_shape, org_shape)
def process_image(self, line, data_dir, mode): """ process_image """ img, grt, img_name, grt_name = self.load_image( line, data_dir, mode=mode) if mode == ModelPhase.TRAIN: img, grt = aug.resize(img, grt, mode) if cfg.AUG.RICH_CROP.ENABLE: if cfg.AUG.RICH_CROP.BLUR: if cfg.AUG.RICH_CROP.BLUR_RATIO <= 0: n = 0 elif cfg.AUG.RICH_CROP.BLUR_RATIO >= 1: n = 1 else: n = int(1.0 / cfg.AUG.RICH_CROP.BLUR_RATIO) if n > 0: if np.random.randint(0, n) == 0: radius = np.random.randint(3, 10) if radius % 2 != 1: radius = radius + 1 if radius > 9: radius = 9 img = cv2.GaussianBlur(img, (radius, radius), 0, 0) img, grt = aug.random_rotation( img, grt, rich_crop_max_rotation=cfg.AUG.RICH_CROP.MAX_ROTATION, mean_value=cfg.DATASET.PADDING_VALUE) img, grt = aug.rand_scale_aspect( img, grt, rich_crop_min_scale=cfg.AUG.RICH_CROP.MIN_AREA_RATIO, rich_crop_aspect_ratio=cfg.AUG.RICH_CROP.ASPECT_RATIO) img = aug.hsv_color_jitter( img, brightness_jitter_ratio=cfg.AUG.RICH_CROP. BRIGHTNESS_JITTER_RATIO, saturation_jitter_ratio=cfg.AUG.RICH_CROP. SATURATION_JITTER_RATIO, contrast_jitter_ratio=cfg.AUG.RICH_CROP. CONTRAST_JITTER_RATIO) if cfg.AUG.FLIP: if cfg.AUG.FLIP_RATIO <= 0: n = 0 elif cfg.AUG.FLIP_RATIO >= 1: n = 1 else: n = int(1.0 / cfg.AUG.FLIP_RATIO) if n > 0: if np.random.randint(0, n) == 0: img = img[::-1, :, :] grt = grt[::-1, :] if cfg.AUG.MIRROR: if np.random.randint(0, 2) == 1: img = img[:, ::-1, :] grt = grt[:, ::-1] img, grt = aug.rand_crop(img, grt, mode=mode) elif ModelPhase.is_eval(mode): img, grt = aug.resize(img, grt, mode=mode) img, grt = aug.rand_crop(img, grt, mode=mode) elif ModelPhase.is_visual(mode): org_shape = [img.shape[0], img.shape[1]] img, grt = aug.resize(img, grt, mode=mode) valid_shape = [img.shape[0], img.shape[1]] img, grt = aug.rand_crop(img, grt, mode=mode) else: raise ValueError("Dataset mode={} Error!".format(mode)) # Normalize image img = self.normalize_image(img) if ModelPhase.is_train(mode) or ModelPhase.is_eval(mode): grt = np.expand_dims(np.array(grt).astype('int32'), axis=0) ignore = (grt != cfg.DATASET.IGNORE_INDEX).astype('int32') if ModelPhase.is_train(mode): return (img, grt, ignore) elif ModelPhase.is_eval(mode): return (img, grt, ignore) elif ModelPhase.is_visual(mode): return (img, grt, img_name, valid_shape, org_shape)