Esempio n. 1
0
plot_x = list()
plot_y = list()
plot_y_log = list()
plot_y_soft = list()
with tf.Session() as session:
    session.run(tf.global_variables_initializer())
    epoch_index = 0
    while epoch_index < epochs:
        samples, labels = batcher.get_batch(batch_size)
        model.train_model(session, samples, labels)
        log_model.train_model(session, samples, labels)
        soft_model.train_model(session, samples, labels)
        if batcher.epoch_finished():
            batcher.reset_epoch()
            test_samples, test_labels = batcher.get_test_batch()

            fp = 0
            fn = 0
            pred = np.argmax(model.predict(session, test_samples), axis=1)
            for index, i in enumerate(np.argmax(test_labels, axis=1)):
                if pred[index] == 1 and i != pred[index]:
                    fp += 1
                if pred[index] == 0 and i != pred[index]:
                    fn += 1

            acc = model.get_accuracy(session, test_samples, test_labels)
            acc_log = log_model.get_accuracy(session, test_samples,
                                             test_labels)
            acc_soft = soft_model.get_accuracy(session, test_samples,
                                               test_labels)
Esempio n. 2
0
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from data_batcher import DataBatcher
from vae_model import VAEModel
from time import time
import numpy as np
import tensorflow as tf

print("Finding training data...")
batcher = DataBatcher("generated_data")

print("Building model...")
model = VAEModel(50, [40, 35, 30])
batch_size = 5000
training_steps = 200000

print("Starting training...")
with tf.Session() as session:
    session.run(tf.global_variables_initializer())
    for i in range(training_steps):
        batch, epoch_complete = batcher.get_batch(batch_size)
        model.train_model(session, inputs=batch)
        if epoch_complete:
            test_batch = batcher.get_test_batch()
            loss = model.get_loss(session, inputs=test_batch)
            print("Epoch complete - loss: {}".format(loss))
        if i % 500 == 0:
            test_batch = batcher.get_test_batch()
            loss = model.get_loss(session, inputs=test_batch)
            print("Step {} - loss: {}".format(i, loss))