Esempio n. 1
0
for hetero_lv in hetero_lv_list:
    LSGD_train_result_sub = []
    LSGD_est_result_sub = []
    LSGD_time_sub = []

    lambda_param = 1e-2 / hetero_lv  # Penalty parameter

    np.random.seed(111)

    beta_mu = np.random.normal(loc=0.0, scale=hetero_lv, size=M)  # means of shift for each devices
    beta_true_list = []  # list of true local parameters
    for m in range(M):
        shift = np.random.uniform(beta_mu[m]-0.01, beta_mu[m]+0.01, size=d_gl)
        beta_true_list.append(w_true + shift)
    
    data_all = data_generate_fn(n, M, d_gl, beta_true_list)
    
    for i_repeat in range(n_repeat):
        # Parameters of LSGD_PFL
        avg_period = 5
        w0 = np.zeros(d_gl)
        beta0_list = []
        for m in range(M):
            beta0_list.append(np.zeros(d_gl))
        eta_LSGD = 0.01

        # train by LSGD_PFL
        start_time = time.time()
        print("hetero_lv: {} | Repeat: {} | Training by LSGD_PFL".format(hetero_lv, i_repeat+1))
        loss_train_LSGD, loss_est_LSGD, w_LSGD, beta_list_LSGD = LSGD_PFL(data_all, loss_fun_MX2, fmj_grads_MX2, eta_LSGD, n_commun, 
                                                                          avg_period, est_err_MX2, w_true, beta_true_list, w0, beta0_list, 
Esempio n. 2
0
start_time_total = time.time()

for hetero_lv in hetero_lv_list:
    LSGD_train_result_sub = []
    LSGD_est_result_sub = []
    LSGD_time_sub = []

    np.random.seed(111)
    beta_mu = np.random.normal(loc=0.0, scale=hetero_lv,
                               size=M)  # means of shift for each devices
    beta_true_list = []  # list of true local parameters
    for m in range(M):
        beta_true_list.append(
            np.random.uniform(beta_mu[m] - 0.01, beta_mu[m] + 0.01, size=d_l))

    data_all = data_generate_fn(n, w_true, beta_true_list)

    for i_repeat in range(n_repeat):
        # Parameters of LSGD_PFL
        avg_period = 5
        w0 = np.zeros(d_g)
        beta0_list = []
        for m in range(M):
            beta0_list.append(np.zeros(d_l))
        eta_LSGD = 0.01

        # train by LSGD_PFL
        start_time = time.time()
        print("hetero_lv: {} | Repeat: {} | Training by LSGD_PFL".format(
            hetero_lv, i_repeat + 1))
        loss_train_LSGD, loss_est_LSGD, w_LSGD, beta_list_LSGD = LSGD_PFL(