def __init__(self, dim_time, dim_input):

        model = {}
        model['noise_std'] = 1e-2
        p_array = [0.4, 0.3, 0.5, 0.5, 0.4, 0.3, 0.8, 0.6]
        model["p"] = [p_array[i] for i in range(dim_input)]
        model["t"] = 78
        v_array = [0.03, 0.08, 0.15, 0.2, 0.2, 0.1, 0.1, 0.25]
        model["v"] = [v_array[i] for i in range(dim_input)]
        model['ksi_mean'] = 0
        model['ksi_std'] = 1
        model['tau_mean'] = 0
        model['tau_std'] = 3
        model['geodesic'] = sigmoid

        # A matrix (1 source)
        a_v_array = [1, -1, 1, -1, 1, -1, 1, -1]
        a_v = [a_v_array[i] for i in range(dim_input)]
        model["a_matrix"] = (
            np.array(a_v) - np.array(a_v).dot(model["v"]) /
            (np.array(model["v"]).dot(model["v"])) * np.array(model["v"]))
        model['sources_std'] = 2e-2

        # Cohort
        cohort = {}

        cohort['n_visits'] = dim_time
        cohort['duration'] = 6
        cohort['patient_sd_begin_age'] = 2
        cohort['patient_mean_begin_age'] = 80 - cohort['duration'] / 2.

        cohort['name'] = "PPMI-Clone-2modalities"
        cohort['n_patients'] = int(1e6)

        self.data_generator = Data_Generator(cohort, model)
        self.patient = 0
Esempio n. 2
0
def main(unused_argv):
    data_config = configuration.DataConfig().config
    data_gen = Data_Generator(
        processed_video_dir=data_config["processed_video_dir"],
        caption_file=data_config["caption_file"],
        unique_freq_cutoff=data_config["unique_frequency_cutoff"],
        max_caption_len=data_config["max_caption_length"])

    data_gen.load_vocabulary(data_config["caption_data_dir"])
    data_gen.load_dataset(data_config["caption_data_dir"])
    #data_gen.build_dataset()

    assert FLAGS.dataset in ["val", "test", "train"]

    if FLAGS.max_len_captions:
        max_len = FLAGS.max_len_captions
    else:
        max_len = data_config['max_caption_length']

    model_config = configuration.ModelConfig(data_gen).config
    model = Model_S2VT(
        num_frames=model_config["num_frames"],
        image_width=model_config["image_width"],
        image_height=model_config["image_height"],
        image_channels=model_config["image_channels"],
        num_caption_unroll=model_config["num_caption_unroll"],
        num_last_layer_units=model_config["num_last_layer_units"],
        image_embedding_size=model_config["image_embedding_size"],
        word_embedding_size=model_config["word_embedding_size"],
        hidden_size_lstm1=model_config["hidden_size_lstm1"],
        hidden_size_lstm2=model_config["hidden_size_lstm2"],
        vocab_size=model_config["vocab_size"],
        initializer_scale=model_config["initializer_scale"],
        learning_rate=model_config["learning_rate"])
    model.build()

    summary_op = tf.summary.merge(model.summaries)

    gen_caption = []

    infer_util = Inference(model, data_gen.word_to_idx, data_gen.idx_to_word)

    with tf.Session() as sess:
        train_writer = tf.summary.FileWriter(data_config["train_log_dir"],
                                             sess.graph)
        saver = tf.train.Saver(max_to_keep=20,
                               keep_checkpoint_every_n_hours=0.5)

        if FLAGS.checkpoint_model:
            model_path = FLAGS.checkpoint_model
        else:
            model_path = tf.train.latest_checkpoint(
                data_config["checkpoint_dir"])

        if model_path != None:
            print("Restoring weights from %s" % model_path)
            saver.restore(sess, model_path)
        else:
            print("No checkpoint found. Exiting")
            return

        if FLAGS.max_captions:
            max_iter = FLAGS.max_captions
        else:
            max_iter = len(data_gen.dataset[
                FLAGS.dataset]) + 10  #+10 is just to be safe ;)

        iter = 0
        btch = 0
        video_paths = {
            i["file_name"]: i["path"]
            for i in data_gen.dataset[FLAGS.dataset]
        }
        video_files = list(video_paths.keys())
        for btch in range(0, len(video_files), FLAGS.batch_size):
            print("Processing batch %d" % (int(btch / FLAGS.batch_size) + 1))
            start = btch
            end = min(len(video_files), btch + FLAGS.batch_size)
            dataset = {}
            dataset["video"] = np.asarray([
                np.load(video_paths[video_files[i]])
                for i in range(start, end)
            ])
            dataset["path"] = [
                video_paths[video_files[i]] for i in range(start, end)
            ]
            dataset["file"] = [video_files[i] for i in range(start, end)]
            dataset["gen_caption"] = infer_util.generate_caption_batch(
                sess, dataset["video"], max_len=max_len)
            for i in range(len(dataset['gen_caption'])):
                dictionary = {}
                dictionary["gen_caption"] = dataset['gen_caption'][i]
                dictionary["file_name"] = dataset['file'][i]
                dictionary["path"] = dataset['path'][i]
                gen_caption.append(dictionary)
                iter += 1
                if iter >= max_iter:
                    break
            if iter >= max_iter:
                break
    with open(
            os.path.join(data_config["result_dir"], "generated_caption.json"),
            "w") as fl:
        fl.write(json.dumps(gen_caption, indent=4, sort_keys=True))
Esempio n. 3
0
def run():
    """Runs evaluation in a loop, and logs summaries to TensorBoard."""
    # Create the evaluation directory if it doesn't exist.

    data_config = configuration.DataConfig().config
    data_gen = Data_Generator(data_config["processed_video_dir"],
                              data_config["caption_file"],
                              data_config["unique_frequency_cutoff"],
                              data_config["max_caption_length"])

    data_gen.load_vocabulary(data_config["caption_data_dir"])
    data_gen.load_dataset(data_config["caption_data_dir"])

    FLAGS.checkpoint_dir = data_config["checkpoint_dir"]

    eval_dir = data_config["val_log_dir"]
    if not tf.gfile.IsDirectory(eval_dir):
        tf.logging.info("Creating eval directory: %s", eval_dir)
        tf.gfile.MakeDirs(eval_dir)

    g = tf.Graph()
    with g.as_default():
        # Build the model for evaluation.
        model_config = configuration.ModelConfig(data_gen).config
        model = Model_S2VT(**model_config)
        model.build()

        # Create the Saver to restore model Variables.
        saver = tf.train.Saver()

        # Create the summary operation and the summary writer.
        val_writer = tf.summary.FileWriter(data_config["val_log_dir"])

        g.finalize()

        if (FLAGS.eval_all_models):
            model_names = list(
                set([
                    n.split(".")[0]
                    for n in os.listdir(data_config["checkpoint_dir"])
                    if "model" in n
                ]))
            model_names.sort(key=lambda x: int(x[6:]))
            for name in model_names:
                FLAGS.checkpoint_file = os.path.join(
                    data_config["checkpoint_dir"], name)
                tf.logging.info(
                    "Starting evaluation of %s at " % (name) +
                    time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime()))
                run_once(model, saver, val_writer, data_gen)
        else:
            # Run a new evaluation run every eval_interval_secs.
            while True:
                start = time.time()
                tf.logging.info(
                    "Starting evaluation at " +
                    time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime()))
                run_once(model, saver, val_writer, data_gen)
                time_to_next_eval = start + FLAGS.eval_interval_secs - time.time(
                )
                if time_to_next_eval > 0:
                    time.sleep(time_to_next_eval)
Esempio n. 4
0
def main():
    if len(sys.argv) < 2:
        print("Please type in which data to use: sinusoid || linear")
        sys.exit()
    #maml_hyperparameters
    torch.autograd.set_detect_anomaly(True)
    meta_lr = 0.001
    inner_lr = 0.001
    update_num = 1
    meta_epochs = 500
    plot_size = meta_epochs // 100
    start_time = time.time()
    #data
    task_num, data_num = 25, 5
    data = Data_Generator(num_task=task_num,
                          num_samples_per_task=data_num,
                          task_type=sys.argv[1])
    #model
    model = Predictor()
    optimizer = optim.Adam(model.parameters(), lr=meta_lr)
    iterations = 3
    criterion = nn.MSELoss()
    mode = "maml"
    #proximal regualization
    inner_iterations = 5
    #da_related
    proposed = True
    u = [0.00001 / math.sqrt(k + 1) for k in range(meta_epochs)]
    grad_list = []
    linear_func = 0
    #used for quadratic term
    init_parameters = []
    for ele in model.state_dict().keys():
        init_parameters.append(model.state_dict()[ele])

    #beginning of the training
    for epoch in range(meta_epochs):
        if sys.argv[1] == "linear":
            pass
        elif sys.argv[1] == "sinusoid":
            inputs, outputs, amp, phase = data.generate()
        losses = [0] * task_num
        if epoch % plot_size == 0:
            sys.stdout.write("\r%d" % epoch)
            sys.stdout.flush()
        for i in range(task_num):
            if mode == "maml":
                #regular maml
                loss = F.mse_loss(
                    torch.tensor(outputs[i][:data_num], dtype=torch.float32),
                    model(
                        torch.tensor(inputs[i][:data_num],
                                     dtype=torch.float32)))
                #if create_graph=False, first-order MAML?
                grad = torch.autograd.grad(loss,
                                           model.parameters(),
                                           create_graph=True)
                fast_weights = list(
                    map(lambda p: p[1] - inner_lr * p[0],
                        zip(grad, model.parameters())))
                losses[i] = F.mse_loss(
                    torch.tensor(outputs[i][data_num:], dtype=torch.float32),
                    model(torch.tensor(inputs[i][data_num:],
                                       dtype=torch.float32),
                          vars=fast_weights))
        """
        elif mode=="proximal":
                temp_model=Predictor()
                loss=F.mse_loss(torch.tensor(outputs[i][:data_num],dtype =torch.float32),temp_model(torch.tensor(inputs[i][:data_num],dtype = torch.float32)))
                regularization =torch.tensor(list(map(lambda p: ((p[1] -p[0])**2).sum(), zip(temp_model.parameters(), model.parameters())))).sum()
                in_optimizer=optim.Adam(temp_model.parameters(),lr=inner_lr)
                total=loss+regularization
                for _ in range(inner_iterations):
                    in_optimizer.zero_grad()
                    total.backward(retain_graph=True)
                    in_optimizer.step()
                losses[i]=total

        else: #dual averaging
                loss=F.mse_loss(torch.tensor(outputs[i][:data_num],dtype =torch.float32),model(torch.tensor(inputs[i][:data_num],dtype = torch.float32)))
                #if create_graph=False, first-order MAML?
                grad = torch.autograd.grad(loss, model.parameters(),create_graph=True)
                fast_weights = list(map(lambda p: p[1] - inner_lr * p[0], zip(grad, model.parameters())))
                losses[i]=F.mse_loss(torch.tensor(outputs[i][data_num:],dtype=torch.float32),model(torch.tensor(inputs[i][data_num:],dtype=torch.float32),vars=fast_weights))
        """
        sum_losses = sum(losses)
        for _ in range(iterations):
            optimizer.zero_grad()
            sum_losses.backward(retain_graph=True)
            optimizer.step()
        """
        else:
            grad = torch.autograd.grad(sum_losses, model.parameters())
            "initializing"
            if epoch==0:
                grad_list=grad
            else:
                grad_list=list(map(lambda p: p[1]+p[0], zip(grad, grad_list)))
            quadratic=0
            for param,init in zip(model.parameters(),init_parameters):
                quadratic+=criterion(param,init)
            linear=0
            for param,g in zip(model.parameters(),grad_list):
                linear+=torch.sum(g*param)
            real_function=1.0/(epoch+1)*linear+u[epoch]*quadratic
            real_function.backward()
            optimizer.step()
        """

    test_task_data_num, test_task_num = 20, 1
    test_updates = 1
    plot_size = 100
    test_inputs, test_outputs, test_amp, test_phase = data.generate()
    x = np.linspace(-5.0, 5.0, num=100).reshape(-1, 1)
    y_before = model(torch.tensor(x, dtype=torch.float32).reshape(
        -1, 1)).detach().numpy()
    plt.plot(x, y_before, label="before finetuning")
    optimizer = optim.Adam(model.parameters(), lr=meta_lr)
    for i in range(test_updates):
        optimizer.zero_grad()
        for _ in range(iterations):
            loss = criterion(
                torch.tensor(test_outputs[0][:test_task_data_num],
                             dtype=torch.float32),
                model(
                    torch.tensor(test_inputs[0][:test_task_data_num],
                                 dtype=torch.float32)))
            loss.backward()
            optimizer.step()
    loss = criterion(
        torch.tensor(test_outputs[0][test_task_data_num:],
                     dtype=torch.float32),
        model.forward(
            torch.tensor(test_inputs[0][test_task_data_num:],
                         dtype=torch.float32)))
    y_predict = model(torch.tensor(x, dtype=torch.float32).reshape(
        -1, 1)).detach().numpy()
    total_se = np.square(
        y_predict -
        np.linspace(-5.0, 5.0, num=plot_size).reshape(-1, 1)).mean()
    print("\nThe execution time:", time.time() - start_time)
    print("\nThe total squared error", total_se)
    plt.plot(x, test_phase[0] * np.sin(x - test_amp[0]), label="oracle")
    plt.plot(x, y_predict, label="after fine-tuning")
    plt.legend()
    plt.show()
Esempio n. 5
0
def main(unused_argv):
    data_config = configuration.DataConfig().config
    data_gen = Data_Generator(
        processed_video_dir=data_config["processed_video_dir"],
        caption_file=data_config["caption_file"],
        unique_freq_cutoff=data_config["unique_frequency_cutoff"],
        max_caption_len=data_config["max_caption_length"])

    data_gen.load_vocabulary(data_config["caption_data_dir"])
    data_gen.load_dataset(data_config["caption_data_dir"])
    #data_gen.build_dataset()

    model_config = configuration.ModelConfig(data_gen).config
    model = Model_S2VT(
        num_frames=model_config["num_frames"],
        image_width=model_config["image_width"],
        image_height=model_config["image_height"],
        image_channels=model_config["image_channels"],
        num_caption_unroll=model_config["num_caption_unroll"],
        num_last_layer_units=model_config["num_last_layer_units"],
        image_embedding_size=model_config["image_embedding_size"],
        word_embedding_size=model_config["word_embedding_size"],
        hidden_size_lstm1=model_config["hidden_size_lstm1"],
        hidden_size_lstm2=model_config["hidden_size_lstm2"],
        vocab_size=model_config["vocab_size"],
        initializer_scale=model_config["initializer_scale"],
        learning_rate=model_config["learning_rate"])
    model.build()

    summary_op = tf.summary.merge(model.summaries)

    with tf.Session() as sess:
        train_writer = tf.summary.FileWriter(data_config["train_log_dir"],
                                             sess.graph)
        saver = tf.train.Saver(max_to_keep=20,
                               keep_checkpoint_every_n_hours=0.5)

        if FLAGS.checkpoint_model:
            model_path = FLAGS.checkpoint_model
        else:
            model_path = tf.train.latest_checkpoint(
                data_config["checkpoint_dir"])

        if model_path != None:
            print("Restoring weights from %s" % model_path)
            saver.restore(sess, model_path)
        else:
            print("No checkpoint found. Intializing Variables from scratch")
            sess.run(tf.global_variables_initializer())

        data_gen.init_batch(int(FLAGS.batch_size), "train")

        if FLAGS.save_freq:
            iter_to_save = np.int32(FLAGS.save_freq)
        else:
            iter_to_save = int(data_gen.iter_per_epoch["train"] / 2)

        for epoch in range(int(FLAGS.num_epochs)):
            for i in range(data_gen.iter_per_epoch["train"]):
                start_time = time.time()
                dataset = data_gen.get_next_batch("train")
                data_gen_time = time.time() - start_time

                feed_dict = {}
                feed_dict[model.caption_input] = dataset["indexed_caption"]
                feed_dict[model.caption_mask] = dataset["caption_mask"]
                feed_dict[model.rnn_input] = dataset["video"]

                if np.mod(i + 1, int(FLAGS.summary_freq)) == 0:
                    print("Writing Summary")
                    summary, loss, global_step, _ = sess.run(
                        [
                            summary_op, model.batch_loss, model.global_step,
                            model.train_step
                        ],
                        feed_dict=feed_dict)
                    train_writer.add_summary(summary, global_step)

                    time_global_step = tf.Summary()
                    value = time_global_step.value.add()
                    value.simple_value = (time.time() - start_time)
                    value.tag = "global_step/time_global_step"
                    train_writer.add_summary(time_global_step, global_step)
                else:
                    loss, global_step, _ = sess.run([
                        model.batch_loss, model.global_step, model.train_step
                    ],
                                                    feed_dict=feed_dict)

                print("global_step = ", global_step, ", loss = ", loss,
                      ', Elapsed time: %.2f' % (time.time() - start_time))

                if np.mod(i + 1, iter_to_save) == 0:
                    print("Saving the model ...")
                    saver.save(sess,
                               os.path.join(data_config["checkpoint_dir"],
                                            'model'),
                               global_step=int(global_step))

        print("Saving the model ...")
        saver.save(sess,
                   os.path.join(data_config["checkpoint_dir"], 'model'),
                   global_step=int(global_step))
Esempio n. 6
0
from __future__ import print_function
from __future__ import absolute_import

import json
import os
import configuration
from data_generator import Data_Generator


def is_ascii(s):
    return all(ord(c) < 128 for c in s)


data_config = configuration.DataConfig().config
data_gen = Data_Generator(data_config["processed_video_dir"],
                          data_config["caption_file"],
                          data_config["unique_frequency_cutoff"],
                          data_config["max_caption_length"])

data_gen.load_vocabulary(data_config["caption_data_dir"])
data_gen.load_dataset(data_config["caption_data_dir"])

ref = {
    'info': {},
    'images': [],
    'licenses': [],
    'type': 'captions',
    'annotations': []
}

ref['info'] = {
    'contributor': 'Suyash Agrawal',
Esempio n. 7
0
import numpy as np
import random
import matplotlib.pyplot as plt
from maml_linear_regression import maml_linear_regression
from data_generator import Data_Generator

data_generator=Data_Generator()
dim=10
real_theta=np.random.rand(dim)
theta,datas,outputs=data_generator.generate_linear(real_theta)

maml=maml_linear_regression(10,False) #タスク数、データ数(False数の場合10-1000のデータをランダムに選択)
#X,y,theta=maml.datas[0]
#print(maml.meta_gradient(X,y,theta))
print(maml.fit())
print(maml.real_theta)




x=np.arange(len(maml.process))
plt.plot(x,maml.test_process,label='test set')
plt.plot(x,maml.process,label='val set')
plt.plot(x,maml.real_process)
plt.legend(loc='upper right')
plt.ylim(0,1000)
plt.show()
"""
Esempio n. 8
0
from data_loader import Data_Loader
from data_generator import Data_Generator

if __name__ == "__main__":

    # Enter how many rows to generate
    limit = int(input("Enter number of rows to generate: "))

    # Initializing classes, Data_Loader(), Data_Generator
    loader = Data_Loader()
    generator = Data_Generator(limit)

    # Loads signle names from a csv file into a dataframe
    filename = 'names1.csv'
    df = loader.read_csvfile(filename)

    # Generates firstnames, middlenames, lastnames for every religion and gender
    for religion in loader.religion:
        for gender in loader.gender:
            firstnames, middlenames, lastnames = loader.get_names_by_religion_gender(
                religion, gender)

            for i in range(2):
                if i % 2 == 0:
                    # Generates 2 word length names
                    if gender == 'unisex':
                        gender1 = 'male'
                        firstnames1, middlenames1, lastnames1 = loader.get_names_by_religion_gender(
                            religion, gender1)
                        first_names1 = firstnames + firstnames1
                        last_names1 = lastnames + lastnames1