def loading_data_all(FLAGS): # load all data from FLAGS path # split data to training and testing, only load testing data commits_ = extract_commit(path_file=FLAGS.path) filter_commits = filtering_commit(commits=commits_, num_file=FLAGS.code_file, num_hunk=FLAGS.code_hunk, num_loc=FLAGS.code_line, size_line=FLAGS.code_length) msgs_, codes_ = extract_msg(commits=filter_commits), extract_code( commits=filter_commits) dict_msg_, dict_code_ = dictionary(data=msgs_), dictionary(data=codes_) pad_msg = mapping_commit_msg(msgs=msgs_, max_length=FLAGS.msg_length, dict_msg=dict_msg_) pad_added_code = mapping_commit_code(type="added", commits=filter_commits, max_hunk=FLAGS.code_hunk, max_code_line=FLAGS.code_line, max_code_length=FLAGS.code_length, dict_code=dict_code_) pad_removed_code = mapping_commit_code(type="removed", commits=filter_commits, max_hunk=FLAGS.code_hunk, max_code_line=FLAGS.code_line, max_code_length=FLAGS.code_length, dict_code=dict_code_) labels = load_label_commits(commits=filter_commits) return pad_msg, pad_added_code, pad_removed_code, labels
def load_data_type(path, FLAGS): commits_ = extract_commit_july(path_file=path) msgs_, codes_ = extract_msg(commits=commits_), extract_code( commits=commits_) dict_msg_, dict_code_ = dictionary(data=msgs_), dictionary(data=codes_) print len(commits_), len(dict_msg_), len(dict_code_) pad_msg = mapping_commit_msg(msgs=msgs_, max_length=FLAGS.msg_length, dict_msg=dict_msg_) pad_added_code = mapping_commit_code(type="added", commits=commits_, max_hunk=FLAGS.code_hunk, max_code_line=FLAGS.code_line, max_code_length=FLAGS.code_length, dict_code=dict_code_) pad_removed_code = mapping_commit_code(type="removed", commits=commits_, max_hunk=FLAGS.code_hunk, max_code_line=FLAGS.code_line, max_code_length=FLAGS.code_length, dict_code=dict_code_) labels = load_label_commits(commits=commits_) return pad_msg, pad_added_code, pad_removed_code, labels, dict_msg_, dict_code_
def loading_data_lstm(FLAGS): print FLAGS.model if "msg" in FLAGS.model: commits_ = extract_commit(path_file=FLAGS.path) filter_commits = filtering_commit(commits=commits_, num_file=FLAGS.code_file, num_hunk=FLAGS.code_hunk, num_loc=FLAGS.code_line, size_line=FLAGS.code_length) msgs_, codes_ = extract_msg(commits=filter_commits), extract_code(commits=filter_commits) dict_msg_, dict_code_ = dictionary(data=msgs_), dictionary(data=codes_) pad_msg = mapping_commit_msg(msgs=msgs_, max_length=FLAGS.msg_length, dict_msg=dict_msg_) pad_added_code = mapping_commit_code(type="added", commits=filter_commits, max_hunk=FLAGS.code_hunk, max_code_line=FLAGS.code_line, max_code_length=FLAGS.code_length, dict_code=dict_code_) pad_removed_code = mapping_commit_code(type="removed", commits=filter_commits, max_hunk=FLAGS.code_hunk, max_code_line=FLAGS.code_line, max_code_length=FLAGS.code_length, dict_code=dict_code_) labels = load_label_commits(commits=filter_commits) elif "all" in FLAGS.model: commits_ = extract_commit(path_file=FLAGS.path) filter_commits = filtering_commit(commits=commits_, num_file=FLAGS.code_file, num_hunk=FLAGS.code_hunk, num_loc=FLAGS.code_line, size_line=FLAGS.code_length) msgs_, codes_ = extract_msg(commits=filter_commits), extract_code(commits=filter_commits) all_lines = add_two_list(list1=msgs_, list2=codes_) msgs_ = all_lines dict_msg_, dict_code_ = dictionary(data=msgs_), dictionary(data=codes_) pad_msg = mapping_commit_msg(msgs=msgs_, max_length=FLAGS.msg_length, dict_msg=dict_msg_) pad_added_code = mapping_commit_code(type="added", commits=filter_commits, max_hunk=FLAGS.code_hunk, max_code_line=FLAGS.code_line, max_code_length=FLAGS.code_length, dict_code=dict_code_) pad_removed_code = mapping_commit_code(type="removed", commits=filter_commits, max_hunk=FLAGS.code_hunk, max_code_line=FLAGS.code_line, max_code_length=FLAGS.code_length, dict_code=dict_code_) labels = load_label_commits(commits=filter_commits) elif "code" in FLAGS.model: commits_ = extract_commit(path_file=FLAGS.path) filter_commits = filtering_commit(commits=commits_, num_file=FLAGS.code_file, num_hunk=FLAGS.code_hunk, num_loc=FLAGS.code_line, size_line=FLAGS.code_length) msgs_, codes_ = extract_msg(commits=filter_commits), extract_code(commits=filter_commits) msgs_ = codes_ dict_msg_, dict_code_ = dictionary(data=msgs_), dictionary(data=codes_) pad_msg = mapping_commit_msg(msgs=msgs_, max_length=FLAGS.msg_length, dict_msg=dict_msg_) pad_added_code = mapping_commit_code(type="added", commits=filter_commits, max_hunk=FLAGS.code_hunk, max_code_line=FLAGS.code_line, max_code_length=FLAGS.code_length, dict_code=dict_code_) pad_removed_code = mapping_commit_code(type="removed", commits=filter_commits, max_hunk=FLAGS.code_hunk, max_code_line=FLAGS.code_line, max_code_length=FLAGS.code_length, dict_code=dict_code_) labels = load_label_commits(commits=filter_commits) else: print "You need to type correct model" exit() kf = KFold(n_splits=FLAGS.folds, random_state=FLAGS.seed) for train_index, test_index in kf.split(filter_commits): X_train_msg, X_test_msg = np.array(get_items(items=pad_msg, indexes=train_index)), \ np.array(get_items(items=pad_msg, indexes=test_index)) X_train_added_code, X_test_added_code = np.array(get_items(items=pad_added_code, indexes=train_index)), \ np.array(get_items(items=pad_added_code, indexes=test_index)) X_train_removed_code, X_test_removed_code = np.array(get_items(items=pad_removed_code, indexes=train_index)), \ np.array(get_items(items=pad_removed_code, indexes=test_index)) y_train, y_test = np.array(get_items(items=labels, indexes=train_index)), \ np.array(get_items(items=labels, indexes=test_index)) return X_test_msg, X_test_added_code, X_test_removed_code, y_test
if __name__ == "__main__": tf = model_parameters() FLAGS = tf.flags.FLAGS print_params(tf) type = "msg" msgs_train, codes_train, commit_train = loading_training_data(FLAGS=FLAGS, type=type) path_testing_data = "./data/test_data/merging_markus_sasha.txt" msgs_test, codes_test, commit_test = loading_testing_data( path_file=path_testing_data, FLAGS=FLAGS, type=type) msgs_train_code = msgs_train + codes_train dict_train = dictionary(data=msgs_train_code) pad_msg_train = mapping_commit_msg(msgs=msgs_train, max_length=FLAGS.msg_length, dict_msg=dict_train) pad_msg_test = mapping_commit_msg(msgs=msgs_test, max_length=FLAGS.msg_length, dict_msg=dict_train) labels_train, labels_test = load_label_commits( commits=commit_train), load_label_commits(commits=commit_test) labels_train, labels_test = convert_to_binary( labels_train), convert_to_binary(labels_test) Y_train, Y_test = labels_train, labels_test # name = "lstm_cnn_msg" # name = "lstm_cnn_code" # name = "lstm_cnn_all" # name = "cnn_msg" # name = "cnn_code"
def loading_baseline_july(tf, folds, random_state): FLAGS = tf.flags.FLAGS commits_ = extract_commit_july(path_file=FLAGS.path) filter_commits = commits_ print len(commits_) kf = KFold(n_splits=folds, random_state=random_state) idx_folds = list() for train_index, test_index in kf.split(filter_commits): idx = dict() idx["train"], idx["test"] = train_index, test_index idx_folds.append(idx) if "msg" in FLAGS.model: msgs_, codes_ = extract_msg(commits=filter_commits), extract_code( commits=filter_commits) elif "all" in FLAGS.model: msgs_, codes_ = extract_msg(commits=filter_commits), extract_code( commits=filter_commits) all_lines = add_two_list(list1=msgs_, list2=codes_) msgs_ = all_lines elif "code" in FLAGS.model: msgs_, codes_ = extract_msg(commits=filter_commits), extract_code( commits=filter_commits) msgs_ = codes_ else: print "You need to type correct model" exit() dict_msg_, dict_code_ = dictionary(data=msgs_), dictionary(data=codes_) pad_msg = mapping_commit_msg(msgs=msgs_, max_length=FLAGS.msg_length, dict_msg=dict_msg_) labels = load_label_commits(commits=filter_commits) labels = convert_to_binary(labels) # path_file = "./statistical_test_prob/true_label.txt" # write_file(path_file=path_file, data=labels) # exit() print pad_msg.shape, labels.shape, len(dict_msg_) cntfold = 0 pred_dict = dict() pred_dict_list = list() for i in xrange(cntfold, len(idx_folds)): idx = idx_folds[i] train_index, test_index = idx["train"], idx["test"] X_train_msg, X_test_msg = np.array(get_items(items=pad_msg, indexes=train_index)), \ np.array(get_items(items=pad_msg, indexes=test_index)) Y_train, Y_test = np.array(get_items(items=labels, indexes=train_index)), \ np.array(get_items(items=labels, indexes=test_index)) if FLAGS.model == "lstm_cnn_all" or FLAGS.model == "lstm_cnn_msg" \ or FLAGS.model == "lstm_cnn_code" or FLAGS.model == "cnn_all" \ or FLAGS.model == "cnn_msg" or FLAGS.model == "cnn_code": # path_model = "./keras_model/%s_%s.h5" % (FLAGS.model, str(cntfold)) path_model = "./keras_model/test_%s_%s.h5" % (FLAGS.model, str(cntfold)) # path_model = "./keras_model/%s_%s_testing.h5" % (FLAGS.model, str(cntfold)) model = load_model(path_model) else: print "You need to give correct model name" exit() y_pred = model.predict(X_test_msg, batch_size=FLAGS.batch_size) y_pred = np.ravel(y_pred) pred_dict.update(make_dictionary(y_pred=y_pred, y_index=test_index)) y_pred = y_pred.tolist() pred_dict_list += y_pred # print len(pred_dict_list) # exit() # path_file = "./statistical_test_prob/" + FLAGS.model + ".txt" # write_file(path_file=path_file, data=sorted_dict(dict=pred_dict)) path_file = "./statistical_test_prob/" + FLAGS.model + "_checking.txt" write_file(path_file=path_file, data=pred_dict_list)
path_test = "./data/test_data/markus_translated.out" # path_test = "./data/test_data/sasha_translated.out" commits_test = extract_commit(path_file=path_test) filter_commits_test = filtering_commit(commits=commits_test, num_file=code_file, num_hunk=code_hunk, num_loc=code_line, size_line=code_length) msgs_test, codes_test = extract_msg( commits=filter_commits_test), extract_code(commits=filter_commits_test) all_lines_test = add_two_list(list1=msgs_test, list2=codes_test) msgs_test = msgs_test dict_msg_ = dict_msg_train.update(dict_code_train) pad_msg_test = mapping_commit_msg(msgs=msgs_test, max_length=msg_length, dict_msg=dict_msg_) labels = load_label_commits(commits=filter_commits_test) labels = convert_to_binary(labels) model_name = "cnn_all" model_name = "lstm_all" model_name = "bi_lstm_all" model_name = "lstm_cnn_all" print path_test, model_name model_path = "./lstm_model_ver2/" + model_name + "_0.h5" model = load_model(model_path) y_pred = model.predict(pad_msg_test, batch_size=32) y_pred = np.ravel(y_pred) y_pred[y_pred > 0.5] = 1 y_pred[y_pred <= 0.5] = 0
commits_ = extract_commit(path_file=FLAGS.path) filter_commits = filtering_commit(commits=commits_, num_file=FLAGS.code_file, num_hunk=FLAGS.code_hunk, num_loc=FLAGS.code_line, size_line=FLAGS.code_length) msgs_, codes_ = extract_msg(commits=filter_commits), extract_code( commits=filter_commits) msgs_ = codes_ else: print "You need to type correct model" exit() dict_msg_, dict_code_ = dictionary(data=msgs_), dictionary(data=codes_) pad_msg = mapping_commit_msg(msgs=msgs_, max_length=FLAGS.msg_length, dict_msg=dict_msg_) labels = load_label_commits(commits=filter_commits) labels = convert_to_binary(labels) print pad_msg.shape, labels.shape, labels.shape, len(dict_msg_) y_pred = model.predict(pad_msg, batch_size=FLAGS.batch_size) y_pred = np.ravel(y_pred) y_pred[y_pred > 0.5] = 1 y_pred[y_pred <= 0.5] = 0 accuracy = accuracy_score(y_true=labels, y_pred=y_pred) precision = precision_score(y_true=labels, y_pred=y_pred) recall = recall_score(y_true=labels, y_pred=y_pred) f1 = f1_score(y_true=labels, y_pred=y_pred) auc = auc_score(y_true=labels, y_pred=y_pred)
def running_baseline_july(tf, folds, random_state): FLAGS = tf.flags.FLAGS commits_ = extract_commit_july(path_file=FLAGS.path) filter_commits = commits_ print len(commits_) kf = KFold(n_splits=folds, random_state=random_state) idx_folds = list() for train_index, test_index in kf.split(filter_commits): idx = dict() idx["train"], idx["test"] = train_index, test_index idx_folds.append(idx) if "msg" in FLAGS.model: msgs_, codes_ = extract_msg(commits=filter_commits), extract_code(commits=filter_commits) elif "all" in FLAGS.model: msgs_, codes_ = extract_msg(commits=filter_commits), extract_code(commits=filter_commits) all_lines = add_two_list(list1=msgs_, list2=codes_) msgs_ = all_lines elif "code" in FLAGS.model: msgs_, codes_ = extract_msg(commits=filter_commits), extract_code(commits=filter_commits) msgs_ = codes_ else: print "You need to type correct model" exit() dict_msg_, dict_code_ = dictionary(data=msgs_), dictionary(data=codes_) pad_msg = mapping_commit_msg(msgs=msgs_, max_length=FLAGS.msg_length, dict_msg=dict_msg_) labels = load_label_commits(commits=filter_commits) labels = convert_to_binary(labels) print pad_msg.shape, labels.shape, len(dict_msg_) # exit() timestamp = str(int(time.time())) accuracy, precision, recall, f1, auc = list(), list(), list(), list(), list() cntfold = 0 pred_dict, pred_dict_prob = dict(), dict() for i in xrange(cntfold, len(idx_folds)): idx = idx_folds[i] train_index, test_index = idx["train"], idx["test"] X_train_msg, X_test_msg = np.array(get_items(items=pad_msg, indexes=train_index)), \ np.array(get_items(items=pad_msg, indexes=test_index)) Y_train, Y_test = np.array(get_items(items=labels, indexes=train_index)), \ np.array(get_items(items=labels, indexes=test_index)) if FLAGS.model == "lstm_cnn_msg" or FLAGS.model == "lstm_cnn_code" or FLAGS.model == "lstm_cnn_all": model = lstm_cnn(x_train=X_train_msg, y_train=Y_train, x_test=X_test_msg, y_test=Y_test, dictionary_size=len(dict_msg_), FLAGS=FLAGS) elif FLAGS.model == "cnn_msg" or FLAGS.model == "cnn_code" or FLAGS.model == "cnn_all": model = cnn_model(x_train=X_train_msg, y_train=Y_train, x_test=X_test_msg, y_test=Y_test, dictionary_size=len(dict_msg_), FLAGS=FLAGS) else: print "You need to give correct model name" exit() # model.save("./keras_model/" + FLAGS.model + "_" + str(cntfold) + ".h5") # model.save("./keras_model/" + FLAGS.model + "_" + str(cntfold) + "_testing.h5") # model.save("./keras_model/test_" + FLAGS.model + "_" + str(cntfold) + ".h5") model.save("./keras_model/newres_funcalls_" + FLAGS.model + "_" + str(cntfold) + ".h5") y_pred = model.predict(X_test_msg, batch_size=FLAGS.batch_size) y_pred = np.ravel(y_pred) y_pred_tolist = y_pred.tolist() data_fold = [str(i) + "\t" + str(l) for i, l in zip(test_index, y_pred)] path_file = "./statistical_test/newres_funcalls_%s_fold_%s.txt" % (FLAGS.model, str(cntfold)) write_file(path_file=path_file, data=data_fold) y_pred[y_pred > 0.5] = 1 y_pred[y_pred <= 0.5] = 0 pred_dict.update(make_dictionary(y_pred=y_pred, y_index=test_index)) accuracy.append(accuracy_score(y_true=Y_test, y_pred=y_pred)) precision.append(precision_score(y_true=Y_test, y_pred=y_pred)) recall.append(recall_score(y_true=Y_test, y_pred=y_pred)) f1.append(f1_score(y_true=Y_test, y_pred=y_pred)) auc.append(auc_score(y_true=Y_test, y_pred=y_pred)) print "accuracy", accuracy_score(y_true=Y_test, y_pred=y_pred) print "precision", precision_score(y_true=Y_test, y_pred=y_pred) print "recall", recall_score(y_true=Y_test, y_pred=y_pred) print "f1", f1_score(y_true=Y_test, y_pred=y_pred) cntfold += 1 break