Esempio n. 1
0
 def executeWndchrm(self):
     command = ["wndchrm", "train", data_io.get_training_folder(), data_io.get_wndchrm_datafit()]
     subprocess.call(" ".join(command), shell=True)
     (train, target) = self.parseWndchrmOutput()
     outfile = open(data_io.get_wndchrm_dataset(), "wb")
     np.savez(outfile, train=train, target=target)
     return (train, target)
Esempio n. 2
0
 def executeWndchrm(self, namesObservations):
     #wndchrm classify -Ttestset.fit dataset.fit folder
     testingFolder = os.path.join(data_io.get_testing_folder(), data_io.get_test_folder())
     command = ["wndchrm", "classify", "-T%s" %(data_io.get_wndchrm_datafit_test()) , 
                data_io.get_wndchrm_datafit(), testingFolder]
     subprocess.call(" ".join(command), shell=True)
     valid = self.parseWndchrmOutput()
     outfile = open(data_io.get_wndchrm_dataset_test(), "wb")
     np.savez(outfile, valid=valid, namesObservations=namesObservations)
     return valid
Esempio n. 3
0
 def parseWndchrmOutput(self):
     output = open(data_io.get_wndchrm_datafit(),"r")
     train = []
     target = []
     line = output.readline()
     while not "positiveSamples" in line:
         line = output.readline()
     line = output.readline()
     while line != "":
         train.append([np.float64(num) for num in line.split(" ")])
         line = output.readline()
         toAppend = 1 if "positiveSamples" in line else 0
         target.append(toAppend)
         line = output.readline()
     train = np.array(train)
     target = np.array(target)
     return (train, target)