Esempio n. 1
0
def train(df, tar, save=False):
    set1 = 'train' if len(sys.argv) < 2 else sys.argv[1]
    # set2 = [] if len(sys.argv) < 3 else sys.argv[2:]
    train_filter = None

    model = MODEL(**MODEL_PARAMS)

    print("Reading in training data " + set1)
    train = df
    print("Extracting features")
    train = model.extract(train)
    if save:
        print("Saving train features")
        data_io.write_data(set1, train)
    # target = data_io.read_target(set1)

    # Data selection
    train, target = util.random_permutation(train, tar)
    train_filter = None

    if train_filter is not None:
        train = train[train_filter]
        target = target[train_filter]

    print("Training model with optimal weights")
    X = pd.concat([train])
    y = np.concatenate((tar))
    model.fit(X, y)
    if save:
        model_path = "model.pkl"
        print("Saving model", model_path)
        data_io.save_model(model, model_path)
    return model
Esempio n. 2
0
def main():

    set1 = 'train' if len(sys.argv) < 2 else sys.argv[1]
    set2 = [] if len(sys.argv) < 3 else sys.argv[2:]
    train_filter = None
    train_filter2 = None

    model = MODEL(**MODEL_PARAMS)

    print("Reading in training data " + set1)
    train = data_io.read_data(set1)
    print("Extracting features")
    train = model.extract(train)
    print("Saving train features")
    data_io.write_data(set1, train)
    target = data_io.read_target(set1)

    train2 = None
    target2 = None
    for s in set2:
        print "Reading in training data", s
        tr = data_io.read_data(s)
        print "Extracting features"
        tr = model.extract(tr)
        print "Saving train features"
        data_io.write_data(s, tr)
        tg = data_io.read_target(s)
        train2 = tr if train2 is None else pd.concat(
            (train2, tr), ignore_index=True)
        target2 = tg if target2 is None else pd.concat(
            (target2, tg), ignore_index=True)
        train2, target2 = util.random_permutation(train2, target2)
        train_filter2 = (train2['A type'] == 'Numerical') & (train2['B type']
                                                             == 'Numerical')

    # Data selection
    train, target = util.random_permutation(train, target)
    train_filter = ((train['A type'] == 'Numerical') &
                    (train['B type'] == 'Numerical'))

    if train_filter is not None:
        train = train[train_filter]
        target = target[train_filter]
    if train_filter2 is not None:
        train2 = train2[train_filter2]
        target2 = target2[train_filter2]

    print("Training model with optimal weights")
    X = pd.concat([train, train2]) if train2 is not None else train
    y = np.concatenate((target.Target.values, target2.Target.values
                        )) if target2 is not None else target.Target.values
    model.fit(X, y)
    model_path = "nnmodel.pkl"
    print "Saving model", model_path
    data_io.save_model(model, model_path)
Esempio n. 3
0
def main():
    
    set1 = 'train' if len(sys.argv) < 2 else sys.argv[1]
    set2 = [] if len(sys.argv) < 3 else sys.argv[2:]
    train_filter = None
    train_filter2 = None
    
    model = MODEL(**MODEL_PARAMS)
    
    print("Reading in training data " + set1)
    train = data_io.read_data(set1)
    print("Extracting features")
    train = model.extract(train)
    print("Saving train features")
    data_io.write_data(set1, train)
    target = data_io.read_target(set1)
    
    train2 = None
    target2 = None
    for s in set2:
        print "Reading in training data", s
        tr = data_io.read_data(s)
        print "Extracting features"
        tr = model.extract(tr)
        print "Saving train features"
        data_io.write_data(s, tr)
        tg = data_io.read_target(s)
        train2 = tr if train2 is None else pd.concat((train2, tr), ignore_index=True)
        target2 = tg if target2 is None else pd.concat((target2, tg), ignore_index=True)
        train2, target2 = util.random_permutation(train2, target2)
        train_filter2  = ((train2['A type'] != 'Numerical') & (train2['B type'] == 'Numerical'))
        #train_filter2 |= ((train2['A type'] == 'Numerical') & (train2['B type'] != 'Numerical'))

    # Data selection
    train, target = util.random_permutation(train, target)
    train_filter  = ((train['A type'] != 'Numerical') & (train['B type'] == 'Numerical')) 
    #train_filter |= ((train['A type'] == 'Numerical') & (train['B type'] != 'Numerical'))

    if train_filter is not None:
        train = train[train_filter]
        target = target[train_filter]
    if train_filter2 is not None:
        train2 = train2[train_filter2]
        target2 = target2[train_filter2]

    print("Training model with optimal weights")
    X = pd.concat([train, train2]) if train2 is not None else train
    y = np.concatenate((target.Target.values, target2.Target.values)) if target2 is not None else target.Target.values  
    model.fit(X, y) 
    model_path = "cnmodel.pkl"
    print "Saving model", model_path
    data_io.save_model(model, model_path)
def main():
    if data.IS_DEBUG:
        import time
        t1 = time.time()

    data_io.read_data()
    simulations.start()
    # analysis.start()
    # data_io.write_data()
    # theory.start()

    if data.IS_DEBUG:
        import time
        t2 = time.time()
        print(f'Time = {t2 - t1}')
    else:
        data_io.write_data()