Esempio n. 1
0
 vprint( verbose,  "Using output_dir: " + output_dir)
     
 # Move old results and create a new output directory 
 if not(running_on_codalab) and save_previous_results:
     data_io.mvdir(output_dir, output_dir+'_'+the_date) 
 data_io.mkdir(output_dir) 
 
 #### INVENTORY DATA (and sort dataset names alphabetically)
 datanames = data_io.inventory_data(input_dir)
 # Overwrite the "natural" order
 
 #### DEBUG MODE: Show dataset list and STOP
 if debug_mode>=3:
     data_io.show_io(input_dir, output_dir)
     print('\n****** Sample code version ' + str(version) + ' ******\n\n' + '========== DATASETS ==========\n')        	
     data_io.write_list(datanames)      
     datanames = [] # Do not proceed with learning and testing
     
 # ==================== @RESULT SUBMISSION (KEEP THIS) =====================
 # Always keep this code to enable result submission of pre-calculated results
 # deposited in the res/ subdirectory.
 if len(datanames)>0:
     vprint( verbose,  "************************************************************************")
     vprint( verbose,  "****** Attempting to copy files (from res/) for RESULT submission ******")
     vprint( verbose,  "************************************************************************")
     datanames = data_io.copy_results(datanames, res_dir, output_dir, verbose) # DO NOT REMOVE!
     if not datanames: 
         vprint( verbose,  "[+] Results copied to output directory, no model trained/tested")
     else:
         vprint( verbose, "======== Some missing results on current datasets!")
         vprint( verbose, "======== Proceeding to train/test:\n")
Esempio n. 2
0
default_input_dir="C:\\Users\\vmkocheg\\Documents\\MLContest\\Phase2\\input"
default_output_dir="C:\\Users\\vmkocheg\\Documents\\MLContest\\Phase2\\output"
if len(argv)==1: # Use the default input and output directories if no arguments are provided
    input_dir = default_input_dir
    output_dir = default_output_dir
else:
    input_dir = argv[1]
    output_dir = os.path.abspath(argv[2]);

#### INVENTORY DATA (and sort dataset names alphabetically)
datanames = data_io.inventory_data(input_dir)
#### DEBUG MODE: Show dataset list and STOP
if debug_mode>=3:
    data_io.show_io(input_dir, output_dir)
    data_io.write_list(datanames)
    datanames = [] # Do not proceed with learning and testing


for basename in datanames: # Loop over datasets
    if basename not in ["robert"]:
        continue

    vprint( verbose,  "************************************************")
    vprint( verbose,  "******** Processing dataset " + basename.capitalize() + " ********")
    vprint( verbose,  "************************************************")

    # ======== Learning on a time budget:
    # Keep track of time not to exceed your time budget. Time spent to inventory data neglected.
    start = time.time()