from data_load import load_CIFAR10 #from theano import function, config, shared, sandbox #import theano.tensor as T # # from setup_GPU import setup_theano # # setup_theano() from lasagne import layers from lasagne.updates import nesterov_momentum from lasagne.nonlinearities import softmax from nolearn.lasagne import NeuralNet cifar10_dir = "/home/kel/cifar-10-batches-py" X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) X_train_2d = np.dot(X_train[..., :3], [0.299, 0.587, 0.114]).reshape(-1, 1, 32, 32).astype(np.float32) X_test_2d = np.dot(X_test[..., :3], [0.299, 0.587, 0.114]).reshape(-1, 1, 32, 32).astype(np.float32) X_train_2d = (X_train_2d / 255.0) - 0.5 X_test_2d = (X_test_2d / 255.0) - 0.5 net2 = NeuralNet( layers=[ ('input', layers.InputLayer), ('conv1', layers.Conv2DLayer),
import tensorflow as tf import numpy as np import pandas as pd import random from data_load import load_CIFAR10 import matplotlib.pyplot as plt from knn import knn plt.rcParams['figure.figsize'] = (10, 8) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' filepath = 'data/cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(filepath) print('train data shape:', X_train.shape) print('train labels shape:', y_train.shape) print('test data shape:', X_test.shape) print('test labels shape:', y_test.shape) #########显示部分数据集 classes = [ 'plane', 'car', 'bird', 'cat', 'deer', 'dog', 'drog', 'horse', 'ship', 'truck' ] num_classes = len(classes) samples_per_class = 7 for y, cls in enumerate(classes): idxs = np.flatnonzero(y_train == y) idxs = np.random.choice(idxs, samples_per_class, replace=False) for i, idx in enumerate(idxs):
cbs_gauss_kmeans = [m.EarlyStopping(monitor='val_loss', patience=patience), m.ModelCheckpoint(model_name_gauss_kmeans, monitor='val_loss', verbose=0, save_best_only=True, mode='min')] cbs_gauss_kmedoids = [m.EarlyStopping(monitor='val_loss', patience=patience), m.ModelCheckpoint(model_name_gauss_kmedoids, monitor='val_loss', verbose=0, save_best_only=True, mode='min')] cbs_gauss_no_init = [m.EarlyStopping(monitor='val_loss', patience=patience), m.ModelCheckpoint(model_name_gauss_no_init, monitor='val_loss', verbose=0, save_best_only=True, mode='min')] # Dataset Setup if dataset == "CIFAR-10": x_train, x_test, y_train, y_test = adl.load_CIFAR10() n_classes = 10 else: x_train, x_test, y_train, y_test = adl.load_CIFAR100() n_classes = 100 x_train_pct, y_train_pct = m.sample_train(x_train, y_train, train_pct) m.print_params(feature_extractor, embedding_dim, n_centers_per_class, n_classes, lr, sigma, batch_size, epochs, dataset, input_shape, patience) # Training Models ''' Softmax Model / Plain Model. Without Initialization. With Inverse Kernel.