def main(): g = Graph(is_training=False) # Load vocab pnyn2idx, idx2pnyn, hanzi2idx, idx2hanzi = load_vocab() with g.graph.as_default(): sv = tf.train.Supervisor() with sv.managed_session(config=tf.ConfigProto( allow_soft_placement=True)) as sess: # Restore parameters sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)) print("Restored!") # Get model mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name while True: line = input("请输入测试拼音:") if len(line) > hp.maxlen: print('最长拼音不能超过50') continue x = load_test_string(pnyn2idx, line) #print(x) preds = sess.run(g.preds, {g.x: x}) #got = "".join(idx2hanzi[str(idx)] for idx in preds[0])[:np.count_nonzero(x[0])].replace("_", "") got = "".join( idx2hanzi[idx] for idx in preds[0])[:np.count_nonzero(x[0])].replace( "_", "") print(got)
def main(): g = Graph(is_training=False) # Load vocab pnyn2idx, idx2pnyn, hanzi2idx, idx2hanzi = load_vocab() with g.graph.as_default(): sv = tf.train.Supervisor() with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: # Restore parameters sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!") # Get model mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name while True: line = input("请输入测试拼音:") if len(line) > hp.maxlen: print('最长拼音不能超过50') continue x = load_test_string(pnyn2idx, line) #print(x) preds = sess.run(g.preds, {g.x: x}) #got = "".join(idx2hanzi[str(idx)] for idx in preds[0])[:np.count_nonzero(x[0])].replace("_", "") got = "".join(idx2hanzi[idx] for idx in preds[0])[:np.count_nonzero(x[0])].replace("_", "") print(got)
## 部署版本模型测试 from pd_model import seq2seq import numpy as np from hyperparams import Hyperparams as hp from prepro import * from data_load import load_vocab, load_test_data, load_test_string model = seq2seq(model_path='./log/qwerty/deploy.pb') pnyn2idx, idx2pnyn, hanzi2idx, idx2hanzi = load_vocab() while True: line = input("请输入测试拼音:") if len(line) > hp.maxlen: print('最长拼音不能超过50') continue x = load_test_string(pnyn2idx, line) #print(x) preds = model.inference(x) got = "".join(idx2hanzi[idx] for idx in preds[0])[:np.count_nonzero(x[0])].replace( "_", "") print(got)