import numpy as np import matplotlib.pylab as plt from data_loader import dataset_loader from common.util import shuffle_dataset from common.multi_layer_net import MultiLayerNet from common.trainer import Trainer x_train, t_train, x_test, t_test = dataset_loader() x_train = x_train[:500] t_train = t_train[:500] validation_rate = 0.2 validation_num = int(x_train.shape[0] * validation_rate) x_train, t_train = shuffle_dataset(x_train, t_train) x_valuation = x_train[:validation_num] t_valuation = t_train[:validation_num] x_train = x_train[validation_num:] t_train = t_train[validation_num:] def __train(lr, weight_decay, epoches=50): net = MultiLayerNet(input_size=784, hidden_size_list=[100, 100, 100, 100, 100, 100], output_size=10, weight_decay_lambda=weight_decay) trainer = Trainer(net, x_train, t_train,
import numpy as np import matplotlib.pylab as plt from data_loader import dataset_loader from simple_convnet import SimpleConvnet from common.trainer import Trainer x_train, t_train, x_test, t_test = dataset_loader( "/home/zjy/nlp/Machine_Learning_and_Deep_Learning_Algorithms/datasets", flatten=False) # x_train = x_train[:500] # t_train = t_train[:500] max_epoches = 20 net = SimpleConvnet(input_dim=(1, 28, 28), conv_param={ 'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1 }, hidden_size=100, output_size=10, weight_init_std=0.01) trainer = Trainer(net, x_train, t_train, x_test, t_test, epoches=max_epoches, mini_batch_size=100,