Esempio n. 1
0
    def __init__(self, args):
        self.args = args
        # image transform
        input_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([.485, .456, .406], [.229, .224, .225]),
        ])

        # dataset and dataloader
        data_kwargs = {'transform': input_transform,
                       'base_size': args.base_size,
                       'crop_size': args.crop_size}

        train_dataset = get_segmentation_dataset(args.dataset, split=args.train_split, mode='train', **data_kwargs)
        val_dataset = get_segmentation_dataset(args.dataset, split='val', mode='val', **data_kwargs)
        self.train_loader = data.DataLoader(dataset=train_dataset,
                                            batch_size=args.batch_size,
                                            shuffle=True,
                                            drop_last=True)
        self.val_loader = data.DataLoader(dataset=val_dataset,
                                          batch_size=1,
                                          shuffle=False)

        # create network
        self.model = get_fast_scnn(dataset=args.dataset, aux=args.aux)
        if torch.cuda.device_count() > 1:
            self.model = torch.nn.DataParallel(self.model, device_ids=[0, 1, 2])
        self.model.to(args.device)

        # resume checkpoint if needed
        if args.resume:
            if os.path.isfile(args.resume):
                name, ext = os.path.splitext(args.resume)
                assert ext == '.pkl' or '.pth', 'Sorry only .pth and .pkl files supported.'
                print('Resuming training, loading {}...'.format(args.resume))
                self.model.load_state_dict(torch.load(args.resume, map_location=lambda storage, loc: storage))

        # create criterion
        self.criterion = MixSoftmaxCrossEntropyOHEMLoss(aux=args.aux, aux_weight=args.aux_weight,
                                                        ignore_index=-1).to(args.device)

        # optimizer
        self.optimizer = torch.optim.SGD(self.model.parameters(),
                                         lr=args.lr,
                                         momentum=args.momentum,
                                         weight_decay=args.weight_decay)

        # lr scheduling
        self.lr_scheduler = LRScheduler(mode='poly', base_lr=args.lr, nepochs=args.epochs,
                                        iters_per_epoch=len(self.train_loader),
                                        power=0.9)

        # evaluation metrics
        self.metric = SegmentationMetric(train_dataset.num_class)

        self.best_pred = 0.0
Esempio n. 2
0
    def __init__(self, args):
        self.args = args
        # output folder
        self.outdir = 'test_result'
        if not os.path.exists(self.outdir):
            os.makedirs(self.outdir)
        # image transform
        input_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([.485, .456, .406], [.229, .224, .225]),
        ])
        # dataset and dataloader
        val_dataset = get_segmentation_dataset(args.dataset,
                                               split='val',
                                               mode='test',
                                               transform=input_transform)
        self.val_loader = data.DataLoader(dataset=val_dataset,
                                          batch_size=1,
                                          shuffle=False)
        # create network
        self.model = get_fast_scnn(args.dataset,
                                   aux=args.aux,
                                   pretrained=True,
                                   root=args.save_folder).to(args.device)
        print('Finished loading model!')

        self.metric = SegmentationMetric(val_dataset.num_class)
Esempio n. 3
0
    def __init__(self, args):
        self.args = args
        # output folder
        self.outdir = 'test_result'
        if not os.path.exists(self.outdir):
            os.makedirs(self.outdir)
        # image transform
        input_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([.485, .456, .406], [.229, .224, .225]),
        ])
        # dataset and dataloader
        val_dataset = get_segmentation_dataset(args.dataset,
                                               split='val',
                                               mode='testval',
                                               transform=input_transform)
        self.val_loader = data.DataLoader(dataset=val_dataset,
                                          batch_size=1,
                                          shuffle=False)
        # create network
        self.model = get_model().to(self.args.device)
        self.model.load_state_dict(
            torch.load(
                "/home/rajiv/Documents/papers/API-Semantic-Segmentation/weights/psp_citys.pth"
            ))
        print('Finished loading model!')

        self.metric = SegmentationMetric(val_dataset.num_class)
Esempio n. 4
0
    def __init__(self,NUM_CHANNELS):
        MODEL_NAME = "fast_scnn" if NUM_CHANNELS==4 else "fast_scnn_rgb"
        self.model_name = MODEL_NAME
        
        self.outdir = ARTIFACT_DETECTION_DIR + "/inference/" + self.model_name
        if not os.path.exists(self.outdir):
            os.makedirs(self.outdir)
        
        if MODEL_NAME == "fast_scnn":
            input_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([.485, .456, .406,0.4], [.229, .224, .225,0.4]),
            ])
        else:
            input_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([.485, .456, .406], [.229, .224, .225]),
            ])


        val_dataset = get_segmentation_dataset(num_channels=NUM_CHANNELS,root=ARGS_INFERENCE_DIR, split='val', mode='testval', transform=input_transform)
        self.val_loader = data.DataLoader(dataset=val_dataset,
                                          batch_size=1,
                                          shuffle=False)
        
        WEIGHTS_PATH = ARTIFACT_DETECTION_DIR+"/weights/fast_scnn_rgb" if NUM_CHANNELS==3 else ARTIFACT_DETECTION_DIR+"/weights/fast_scnn"
        print("Weights Path:", WEIGHTS_PATH)
        self.model = get_fast_scnn("fast_scnn",num_channels=NUM_CHANNELS, aux=False, pretrained=True, root=WEIGHTS_PATH).cuda()
        
        
        self.metric = SegmentationMetric(val_dataset.num_class)
Esempio n. 5
0
    def __init__(self, args, cfg=None):
        # train_dataset = [build_dataset(cfg.data.train)]
        # self.dataset= train_dataset
        # val_dataset = [build_dataset(cfg.data.test)]
        # if len(cfg.workflow) == 2:
        #     train_dataset.append(build_dataset(cfg.data.val))
        # train_data_loaders = [
        #     build_dataloader(
        #         ds,
        #         cfg.data.imgs_per_gpu,
        #         cfg.data.workers_per_gpu,
        #         # cfg.gpus,
        #         dist=False) for ds in train_dataset
        # ]
        # val_data_loader = build_dataloader(
        #     val_dataset,
        #     imgs_per_gpu=1,
        #     workers_per_gpu=cfg.data.workers_per_gpu,
        #     dist=False,
        #     shuffle=False)
        # self.train_loader = train_data_loaders[0]
        # self.val_loader = val_data_loader

        self.args = args
        # image transform
        input_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=[123.675, 116.28, 103.53],
                                 std=[58.395, 57.12, 57.375]),
        ])
        # dataset and dataloader
        data_kwargs = {
            'transform': input_transform,
            'base_size': args.base_size,
            'crop_size': args.crop_size
        }
        train_dataset = get_segmentation_dataset(args.dataset,
                                                 split=args.train_split,
                                                 mode='train',
                                                 **data_kwargs)
        val_dataset = get_segmentation_dataset(args.dataset,
                                               split='val',
                                               mode='val',
                                               **data_kwargs)
        self.train_loader = data.DataLoader(dataset=train_dataset,
                                            batch_size=args.batch_size,
                                            shuffle=True,
                                            drop_last=True)
        self.val_loader = data.DataLoader(dataset=val_dataset,
                                          batch_size=1,
                                          shuffle=False)

        # create network
        self.model = get_fast_scnn(dataset=args.dataset, aux=args.aux)
        if torch.cuda.device_count() > 1:
            self.model = torch.nn.DataParallel(self.model,
                                               device_ids=[0, 1, 2])
        self.model.to(args.device)

        # resume checkpoint if needed
        if args.resume:
            if os.path.isfile(args.resume):
                name, ext = os.path.splitext(args.resume)
                assert ext == '.pkl' or '.pth', 'Sorry only .pth and .pkl files supported.'
                print('Resuming training, loading {}...'.format(args.resume))
                self.model.load_state_dict(
                    torch.load(args.resume,
                               map_location=lambda storage, loc: storage))

        # create criterion
        self.criterion = MixSoftmaxCrossEntropyOHEMLoss(
            aux=args.aux, aux_weight=args.aux_weight,
            ignore_index=-1).to(args.device)

        # optimizer
        self.optimizer = torch.optim.SGD(self.model.parameters(),
                                         lr=args.lr,
                                         momentum=args.momentum,
                                         weight_decay=args.weight_decay)

        # lr scheduling
        self.lr_scheduler = LRScheduler(mode='poly',
                                        base_lr=args.lr,
                                        nepochs=args.epochs,
                                        iters_per_epoch=len(self.train_loader),
                                        power=0.9)

        # evaluation metrics
        self.metric = SegmentationMetric(train_dataset.num_class)

        self.best_pred = 0.0
Esempio n. 6
0
from torchvision import transforms
from data_loader import get_segmentation_dataset
from models.fast_scnn import get_fast_scnn
from utils.loss import MixSoftmaxCrossEntropyLoss, MixSoftmaxCrossEntropyOHEMLoss
from utils.lr_scheduler import LRScheduler
from utils.metric import SegmentationMetric
from mmcv import Config
from data_loader.datasets import build_dataset, build_dataloader
from tools_zym.weight import bbox2multimask

import os
import PIL
import numpy as np

train_dataset = get_segmentation_dataset('coco', split='train', mode='train')
val_dataset = get_segmentation_dataset('coco', split='val', mode='val')

root = os.path.join('./data/mask')

if not os.path.exists(root):
    os.mkdir(root)
    os.mkdir(os.path.join(root, 'train2017'))
    os.mkdir(os.path.join(root, 'val2017'))

# for i, (img, mask) in enumerate(train_dataset):
#     print(mask)
for i, (img, mask) in enumerate(train_dataset):

    ids = train_dataset.img_ids[i]
    image_info = train_dataset.coco.loadImgs(ids)[0]