pure_sz = int(sys.argv[1]) noise_sz = int(sys.argv[2]) back_sz = int(sys.argv[3]) # setting batch_size = 128 param_file = '/home/sainbar/fastnet-confussion-layer/config/cifar-10-18pct-confussion11x22.cfg' learning_rate = 1 image_color = 3 image_size = 32 image_shape = (image_color, image_size, image_size, batch_size) init_model = parser.parse_config_file(param_file) net = fastnet.net.FastNet(learning_rate, image_shape, init_model) # prepare data train_data, train_labels, test_data, test_labels = data_loader.load_cifar10() data_mean = train_data.mean(axis=1, keepdims=True) train_data = train_data - data_mean test_data = test_data - data_mean # noisy data noisy_data, noisy_labels = data_loader.load_noisy_labeled() noisy_data = noisy_data - data_mean noisy_labels += 11 # background noise back_data = data_loader.load_noise() back_data = back_data - data_mean back_labels = np.ones(back_data.shape[1]) * 10 train_data = np.concatenate(
pure_sz = int(sys.argv[1]) noise_sz = int(sys.argv[2]) back_sz = int(sys.argv[3]) # setting batch_size = 128 param_file = '/home/sainbar/fastnet-confussion-layer/config/cifar-10-18pct-confussion11x22.cfg' learning_rate = 1 image_color = 3 image_size = 32 image_shape = (image_color, image_size, image_size, batch_size) init_model = parser.parse_config_file(param_file) net = fastnet.net.FastNet(learning_rate, image_shape, init_model) # prepare data train_data, train_labels, test_data, test_labels = data_loader.load_cifar10() data_mean = train_data.mean(axis=1,keepdims=True) train_data = train_data - data_mean test_data = test_data - data_mean # noisy data noisy_data, noisy_labels = data_loader.load_noisy_labeled() noisy_data = noisy_data - data_mean noisy_labels += 11 # background noise back_data = data_loader.load_noise() back_data = back_data - data_mean back_labels = np.ones(back_data.shape[1]) * 10 train_data = np.concatenate((train_data[:,0:pure_sz], noisy_data[:,0:noise_sz], back_data[:,0:back_sz]), axis=1)
net.checkpoint_name += '_' + args.model net.checkpoint_name += '_clean' + str(int(pure_sz/1000)) + 'k' net.checkpoint_name += '_noisy' + str(int(noisy_sz/1000)) + 'k' net.checkpoint_name += '_back' + str(int(back_sz/1000)) + 'k' net.checkpoint_name += '_alpha' + str(alpha) if args.wdecayX != 1: net.checkpoint_name += '_wdX' + str(args.wdecayX) for l in net.layers: if hasattr(l,'wc'): l.wc *= args.wdecayX net.output_dir = '~/data/outside-noise-results/results_BU_robust/' + net.checkpoint_name + '/' if os.path.exists(net.output_dir) == False: os.mkdir(net.output_dir) # prepare data clean_data, clean_labels, test_data, test_labels = data_loader.load_cifar10() data_mean = clean_data.mean(axis=1,keepdims=True) clean_data = clean_data - data_mean test_data = test_data - data_mean # background noise back_data = data_loader.load_noise() back_data = back_data - data_mean back_labels = np.ones(back_data.shape[1]) for i in range(back_sz): back_labels[i] = i % 10 # easy to reproduce # noisy data noisy_data, noisy_labels = data_loader.load_noisy_labeled() noisy_data = noisy_data - data_mean
net.checkpoint_name += '_' + args.model net.checkpoint_name += '_clean' + str(int(pure_sz / 1000)) + 'k' net.checkpoint_name += '_noisy' + str(int(noisy_sz / 1000)) + 'k' net.checkpoint_name += '_back' + str(int(back_sz / 1000)) + 'k' net.checkpoint_name += '_alpha' + str(alpha) if args.wdecayX != 1: net.checkpoint_name += '_wdX' + str(args.wdecayX) for l in net.layers: if hasattr(l, 'wc'): l.wc *= args.wdecayX net.output_dir = '~/data/outside-noise-results/results_BU_robust/' + net.checkpoint_name + '/' if os.path.exists(net.output_dir) == False: os.mkdir(net.output_dir) # prepare data clean_data, clean_labels, test_data, test_labels = data_loader.load_cifar10() data_mean = clean_data.mean(axis=1, keepdims=True) clean_data = clean_data - data_mean test_data = test_data - data_mean # background noise back_data = data_loader.load_noise() back_data = back_data - data_mean back_labels = np.ones(back_data.shape[1]) for i in range(back_sz): back_labels[i] = i % 10 # easy to reproduce # noisy data noisy_data, noisy_labels = data_loader.load_noisy_labeled() noisy_data = noisy_data - data_mean