Esempio n. 1
0
def TrainNet():

    total_device_num = args.node_num * args.gpu_num_per_node
    batch_size = total_device_num * args.batch_size_per_device

    if args.data_dir:
        assert os.path.exists(args.data_dir)
        print("Loading data from {}".format(args.data_dir))
        (labels, images) = data_loader.load_imagenet(
            args.data_dir,
            args.image_size,
            batch_size,
            args.data_part_num,
            args.gpu_image_decoder,
        )
    else:
        print("Loading synthetic data.")
        (labels, images) = data_loader.load_synthetic(args.image_size,
                                                      batch_size)

    logits = model_dict[args.model](images)
    loss = flow.nn.sparse_softmax_cross_entropy_with_logits(
        labels, logits, name="softmax_loss")
    flow.losses.add_loss(loss)

    return loss
Esempio n. 2
0
def run_synthetic_SGLD():
    """Run synthetic SGLD"""
    theta1 = 0
    theta2 = 1
    sigma1 = numpy.sqrt(10)
    sigma2 = 1
    sigmax = numpy.sqrt(2)
    X = load_synthetic(theta1=theta1, theta2=theta2, sigmax=sigmax, num=100)
    minibatch_size = 1
    total_iter_num = 1000000
    lr_scheduler = SGLDScheduler(begin_rate=0.01, end_rate=0.0001, total_iter_num=total_iter_num,
                                 factor=0.55)
    optimizer = mx.optimizer.create('sgld',
                                    learning_rate=None,
                                    rescale_grad=1.0,
                                    lr_scheduler=lr_scheduler,
                                    wd=0)
    updater = mx.optimizer.get_updater(optimizer)
    theta = mx.random.normal(0, 1, (2,), mx.cpu())
    grad = nd.empty((2,), mx.cpu())
    samples = numpy.zeros((2, total_iter_num))
    start = time.time()
    for i in range(total_iter_num):
        if (i + 1) % 100000 == 0:
            end = time.time()
            print("Iter:%d, Time spent: %f" % (i + 1, end - start))
            start = time.time()
        ind = numpy.random.randint(0, X.shape[0])
        synthetic_grad(X[ind], theta, sigma1, sigma2, sigmax,
                       rescale_grad=X.shape[0] / float(minibatch_size), grad=grad)
        updater('theta', grad, theta)
        samples[:, i] = theta.asnumpy()
    plt.hist2d(samples[0, :], samples[1, :], (200, 200), cmap=plt.cm.jet)
    plt.colorbar()
    plt.show()
Esempio n. 3
0
def InferenceNet():
    total_device_num = args.node_num * args.gpu_num_per_node
    batch_size = total_device_num * args.batch_size_per_device
    if args.data_dir:
        assert os.path.exists(args.data_dir)
        print("Loading data from {}".format(args.data_dir))
        (labels,
         images) = data_loader.load_imagenet(args.data_dir, args.image_size,
                                             batch_size, args.data_part_num)
    else:
        print("Loading synthetic data.")
        (labels, images) = data_loader.load_synthetic(args.image_size,
                                                      batch_size)
    logits = model_dict[args.model](images)
    softmax = flow.nn.softmax(logits)
    return softmax
Esempio n. 4
0
def run_synthetic_SGLD():
    """Run synthetic SGLD"""
    theta1 = 0
    theta2 = 1
    sigma1 = numpy.sqrt(10)
    sigma2 = 1
    sigmax = numpy.sqrt(2)
    X = load_synthetic(theta1=theta1, theta2=theta2, sigmax=sigmax, num=100)
    minibatch_size = 1
    total_iter_num = 1000000
    lr_scheduler = SGLDScheduler(begin_rate=0.01,
                                 end_rate=0.0001,
                                 total_iter_num=total_iter_num,
                                 factor=0.55)
    optimizer = mx.optimizer.create('sgld',
                                    learning_rate=None,
                                    rescale_grad=1.0,
                                    lr_scheduler=lr_scheduler,
                                    wd=0)
    updater = mx.optimizer.get_updater(optimizer)
    theta = mx.random.normal(0, 1, (2, ), mx.cpu())
    grad = nd.empty((2, ), mx.cpu())
    samples = numpy.zeros((2, total_iter_num))
    start = time.time()
    for i in range(total_iter_num):
        if (i + 1) % 100000 == 0:
            end = time.time()
            print("Iter:%d, Time spent: %f" % (i + 1, end - start))
            start = time.time()
        ind = numpy.random.randint(0, X.shape[0])
        synthetic_grad(X[ind],
                       theta,
                       sigma1,
                       sigma2,
                       sigmax,
                       rescale_grad=X.shape[0] / float(minibatch_size),
                       grad=grad)
        updater('theta', grad, theta)
        samples[:, i] = theta.asnumpy()
    plt.hist2d(samples[0, :], samples[1, :], (200, 200), cmap=plt.cm.jet)
    plt.colorbar()
    plt.show()