def get_csv_file_list(directorys, file_selector):
     if type(directorys) is tuple:
         return [
             PathList.match(matchCsv, *file_selector)(directory)
             for directory in directorys
         ]
     else:
         return [PathList.match(matchCsv, *file_selector)(directorys)]
 def copy_hdr(self):
     path = PathList.match(r"\.hdr$")(
         self.read_option.read_directory).files()[0]
     shutil.copy(
         path,
         os.path.join(self.read_option.output_directory,
                      os.path.basename(path)))
def read_original_dat(meta: VectorReadOption,
                      common,
                      sep=",",
                      preprocess=[timeShifter]):

    files = PathList.match(r"\.dat$")(meta.read_directory).files(verbose=True)

    dfs = []
    for file in files:
        reader = pd.read_csv(file,
                             sep=sep,
                             chunksize=50000,
                             names=common["columns"],
                             header=meta.header_row)

        df = pd.concat(
            pip(*[f(meta, common) for f in preprocess])(r)
            for r in tqdm(reader))

        display(df.head(10))
        dfs.append(df)

    df = pd.concat(dfs)

    df_droped = df.drop(common["drop"], axis=1)

    return df_droped
    def read_sen(self):
        path = PathList.match(r"\.sen\.csv$")(
            self.read_option.output_directory).files()[0]

        sen = self.Reader.create()\
            .setPath(path)\
            .read(0)\
            .assemble(
                toDateTime,
                dataframe.setTimeSeriesIndex("datetime")
        ).df
        return sen
    def read_vhd(self):
        path = PathList.match(r"\.vhd\.csv$")(
            self.read_option.output_directory).files()[0]

        vhd = self.Reader.create()\
            .setPath(path)\
            .read(0)\
            .assemble(
                toDateTime,
                dataframe.setTimeSeriesIndex("datetime")
        ).df

        # バースト時刻の差 (min)
        delta_burst_time = [0]
        vhd_index = vhd.index

        for i in range(1, len(vhd_index)):
            time_delta = vhd_index[i] - vhd_index[i - 1]
            delta_burst_time.append(time_delta.seconds / 60)

        vhd = vhd.assign(delta_burst_time=delta_burst_time)
        return vhd
 def read_dat(self):
     dat = pd.read_csv(PathList.match(r"dat\.csv")(
         self.read_option.output_directory).files(True)[0],
                       index_col=0,
                       parse_dates=[0])
     return dat
 def convert_sen(self):
     VectorConverter.convert_csv(
         PathList.match(r"\.sen$")(
             self.read_option.read_directory).files()[0], self.sen_columns,
         self.read_option.output_directory)
     print("sen file converted to csv.")
 def convert_vhd(self):
     VectorConverter.convert_csv(
         PathList.match(r"\.vhd$")(
             self.read_option.read_directory).files()[0], self.vhd_columns,
         self.read_option.output_directory)
     print("vhd file converted to csv.")