Esempio n. 1
0
TRAINING_WEIGHTS_FILEPATH = os.path.join(CHECKPOINT_FOLDER_PATH,
                                         'retrained_UNet_500+250epochs.hdf5')

fname_test = [os.path.join(TRAIN_VAL_TEST_DIR, "Xy_test.npz")]

model.load_weights(TRAINING_WEIGHTS_FILEPATH)
prediction_steps, n_evts_test = get_n_iterations(fname_test,
                                                 batch_size=BATCH_SIZE)
print("prediction steps per epoch:{}, n events:{}".format(
    prediction_steps, n_evts_test))

print('INFERENCE STEP')
parallel_model = multi_gpu_model(model, gpus=2)

test_data_gen = data_generator(fname_test,
                               batch_size=BATCH_SIZE,
                               ftarget=lambda y: y)


def inference_step(network_model, test_data_generator, predict_steps):

    y_pred = list()

    for _ in tqdm(range(predict_steps)):
        X_batch, _ = next(test_data_generator)
        Y_batch_pred = network_model.predict_on_batch(X_batch)
        y_pred.append(Y_batch_pred.ravel())
    y_pred = np.vstack(np.asarray(y_pred))

    return y_pred
Esempio n. 2
0
steps_per_epoch, n_events = get_n_iterations(fname_train,
                                             batch_size=BATCH_SIZE)
print("training steps per epoc:{}, number of events:{}".format(
    steps_per_epoch, n_events))

validation_steps, n_evts_val = get_n_iterations(fname_val,
                                                batch_size=BATCH_SIZE)
print("validation steps per epoch:{}, number of events:{}".format(
    validation_steps, n_evts_val))

# prediction_steps, n_evts_test = get_n_iterations(fname_test, batch_size=BATCH_SIZE)
# print(prediction_steps, n_evts_test)

training_generator = data_generator(fname_train,
                                    batch_size=BATCH_SIZE,
                                    ftarget=lambda y: y)

validation_generator = data_generator(fname_val,
                                      batch_size=BATCH_SIZE,
                                      ftarget=lambda y: y)
# data_dir = DATA_DIR_IH

training_history = train_neural_network(model,
                                        training_generator,
                                        steps_per_epoch,
                                        validation_generator,
                                        validation_steps,
                                        batch_size=BATCH_SIZE,
                                        epochs=N_EPOCHS)
Esempio n. 3
0
                                                batch_size=BATCH_SIZE)
print("validation steps per epoch:{}, number of events:{}".format(
    validation_steps, n_evts_val))


def ohe(values):

    values_reshaped = values.reshape(-1, 1)
    onehot_encoder = OneHotEncoder(sparse=False)
    onehot_encoded = onehot_encoder.fit_transform(values_reshaped)
    return onehot_encoded


training_generator = data_generator(fname_train,
                                    data_key='x',
                                    label_key='dist',
                                    batch_size=BATCH_SIZE,
                                    fdata=lambda y: y,
                                    ftarget=ohe)

validation_generator = data_generator(fname_val,
                                      data_key='x',
                                      label_key='dist',
                                      batch_size=BATCH_SIZE,
                                      fdata=lambda y: y,
                                      ftarget=ohe)

training_history = train_neural_network(model,
                                        training_generator,
                                        steps_per_epoch,
                                        validation_generator,
                                        validation_steps,
Esempio n. 4
0
steps_per_epoch, n_events = get_n_iterations(fname_train,
                                             batch_size=BATCH_SIZE)
print(steps_per_epoch, n_events)

# validation_steps, n_evts_val = get_n_iterations(fnames_val[:N_FILES], batch_size=BATCH_SIZE)
# print(validation_steps, n_evts_val)

prediction_steps, n_evts_test = get_n_iterations(fname_test,
                                                 batch_size=BATCH_SIZE)
print(prediction_steps, n_evts_test)
validation_steps, n_evts_val = get_n_iterations(fname_test,
                                                batch_size=BATCH_SIZE)
print(validation_steps, n_evts_val)

training_generator = data_generator(fname_train,
                                    batch_size=BATCH_SIZE,
                                    ftarget=lambda y: y)

validation_generator = data_generator(fname_val,
                                      batch_size=BATCH_SIZE,
                                      fdata=get_Time_Coord,
                                      ftarget=process_cosz)
# data_dir = DATA_DIR_IH

model = get_unet()
model.summary()

training_history = train_neural_network(model,
                                        training_generator,
                                        steps_per_epoch,
                                        validation_generator,