if (delta >= 0): return (bcolors.OKGREEN + format(cur_val, ".3f") + bcolors.ENDC) else: return (bcolors.FAIL + format(cur_val, ".3f") + bcolors.ENDC) # Parse args. args = docopt(__doc__) # Save data to an output dir. outdir = os.path.expanduser(args['--outdir']) output_path = os.path.join(outdir, time.strftime('%Y_%m_%d__%H_%M_%S_%p')) if not os.path.exists(output_path): os.makedirs(output_path) # -------- Load all data -------- train_data = TrainingData.fromfilename("train", args['--indir']) test_data = TrainingData.fromfilename("test", args['--indir']) numTest = 8000 skipTest = 1 if config.running_on_laptop: numTest = 384 * 2 skipTest = 4 test_data.TrimArray(numTest, skipTest) net_model = NNModel() timeStamp = time.strftime("%Y_%m_%d__%H_%M_%S") # Add ops to save and restore all the variables. saver = tf.train.Saver()
else: return format(s, format_str) # Parse args. args = docopt(__doc__) # Save data to an output dir. outdir = os.path.expanduser(args['--outdir']) output_path = os.path.join(outdir, time.strftime('%Y_%m_%d__%H_%M_%S_%p')) if not os.path.exists(output_path): os.makedirs(output_path) print("Tensorflow version: " + tf.__version__) # -------- Load all data -------- train_data = TrainingData.fromfilename("train", args['--indir']) test_data = TrainingData.fromfilename("test", args['--indir']) print("In dir: {}".format(args["--indir"])) if config.neural_net_mode == 'alexnet': net_model = NNModel() elif config.neural_net_mode == 'lstm': net_model = LSTMModel() else: assert False # Bad training mode in config.py. numTest = 8000 skipTest = 1 if config.running_on_laptop: numTest = 8500# 384 * 8 skipTest = 1 test_data.TrimArray(numTest, skipTest)