Esempio n. 1
0
def sort_skeletons(task_skeleton_data):

    ids = map(lambda line: line[0][2], task_skeleton_data)
    print 'skeleton id: ', Counter(ids).most_common()
    skeletons = []
    for counter_ids in Counter(ids).most_common():
        skeleton_id = task_skeleton_data
        main_id = counter_ids[0]

        new_joints_points = []
        for i_point, points in enumerate(skeleton_id):
            if points[0][2] == main_id:
                if len(new_joints_points) == 0: print points[0]
                new_joints_points.append(points)

        skeleton_id = new_joints_points

        skeletons.append(skeleton_id)

    skeleton_data_sorted = skeletons[1]
    data_organizer.save_matrix_pickle(
        skeleton_data_sorted,
        'C:/Users/dario.dotti/Documents/pecs_data_review/skeletons_confusion_behavior_08082017_test.txt'
    )
    return skeleton_data_sorted
def create_cluster_labels_participant_task(raw_features, AE_weights_level_2):

    cluster_model = data_organizer.load_matrix_pickle(
        'C:/Users/dario.dotti/Documents/data_for_personality_exp/after_data_cleaning/head_joint_id1/10_cluster_model_layer2_new.txt'
    )

    final_labels = []
    for participant in raw_features:
        participant_label = []

        for task in participant:
            task_label = []

            for f_vector in task:
                hd = np.dot(f_vector, AE_weights_level_2[0][0])
                act = sigmoid_function(hd + AE_weights_level_2[1])

                label = cluster_model.predict(act.reshape((1, -1)))
                task_label.append(label[0])

            participant_label.append(task_label)

        final_labels.append(participant_label)

    data_organizer.save_matrix_pickle(
        final_labels,
        'C:/Users/dario.dotti/Documents/data_for_personality_exp/after_data_cleaning/head_joint_id1/10clusters_labels_l2_participants_tasks_new.txt'
    )
Esempio n. 3
0
def get_ambient_sensor_features():
    #read and parse file with recorded data
    with open('C:/Users/dario.dotti/Documents/file_to_analyze_AS_5_labels.txt','r') as f:
        files = f.read().split('\n')
        print 'number of recorded files: '+str(len(files))


    matrix_allData_as = []
    for file in files:
        print file

        activation_matrix = ambient_sensor_analysis.feature_extraction_as(file)
        print np.array(activation_matrix).shape
        if len(matrix_allData_as)>0:
            matrix_allData_as = np.vstack((matrix_allData_as,activation_matrix))
        else:
            matrix_allData_as = activation_matrix

    my_data_org.save_matrix_pickle(matrix_allData_as,'C:/Users/dario.dotti/Documents/AS_activation_5_labels_transformed.txt')
Esempio n. 4
0
def main_pecs_data():
    ##get raw data for displaying
    task_skeleton_data = data_organizer.load_matrix_pickle(
        'C:/Users/dario.dotti/Documents/pecs_data_review/skeletons_repetitive_behavior_08082017.txt'
    )
    ##if data contains multiple skeletons here I sort them cronologically
    sort_skeletons(task_skeleton_data)

    my_room = np.zeros((424, 512, 3), dtype=np.uint8)
    my_room += 255
    list_poly = img_processing.divide_image(my_room)

    #draw_joints_and_tracks(task_skeleton_data,my_room)
    #return 0

    skeleton_data_in_time_slices = org_data_in_timeIntervals(
        task_skeleton_data, [0, 0, 2])

    HOT_data, patient_ID = histograms_of_oriented_trajectories(
        list_poly, skeleton_data_in_time_slices)
    data_organizer.save_matrix_pickle(
        HOT_data,
        'C:/Users/dario.dotti/Documents/pecs_data_review/HOT_repetitive_behavior_08082017.txt'
    )
Esempio n. 5
0
def video_clustering_fit(HOT_matrix, filename):
    global my_ms
    my_ms.fit(HOT_matrix)

    if len(filename) > 2:
        data_organizer.save_matrix_pickle(my_ms, filename)
Esempio n. 6
0
        filename = os.path.basename(file)

        video_traj.set_subject(filename.split('_')[0])

        traj_features = video_traj.feature_extraction_video_traj(file)

        matrix_allData_HOT.append(traj_features[1])
        # if len(matrix_allData_HOT)>0:
        #     matrix_allData_HOT = np.vstack((matrix_allData_HOT,traj_features[1]))
        # else:
        #     matrix_allData_HOT = np.array(traj_features[1])

    print len(matrix_allData_HOT)
    #scipy.io.savemat('C:/Users/dario.dotti/Documents/hot_spatial_grid_4x4.mat',mdict={'spatial_grid_4x4': matrix_allData_HOT})
<<<<<<< HEAD
    my_data_org.save_matrix_pickle(matrix_allData_HOT,'C:/Users/dario.dotti/Documents/data_for_personality_exp/after_data_cleaning/skeleton_data_in_tasks_time_slices_30fps_ordered_1sec.txt')##C:/Users/dario.dotti/Desktop/data_recordings_master/master_skeleton_data_in_tasks_time_slices_30fps_1sec.txt
=======
    #my_data_org.save_matrix_pickle(matrix_allData_HOT,'C:/Users/dario.dotti/Desktop/data_recordings_master/master_skeleton_data_in_tasks_time_slices_30fps.txt') #C:/Users/dario.dotti/Documents/data_for_personality_exp/after_data_cleaning/skeleton_data_in_tasks_time_slices_30fps_ordered
>>>>>>> 9348384985d2847c272133ff77ce6181ca1fa082


def get_ambient_sensor_features():
    #read and parse file with recorded data
    with open('C:/Users/dario.dotti/Documents/file_to_analyze_AS_5_labels.txt','r') as f:
        files = f.read().split('\n')
        print 'number of recorded files: '+str(len(files))


    matrix_allData_as = []
    for file in files:
        print file
Esempio n. 7
0
    final_matrix = []
    final_orig_points = []
    final_matrix_realcoord =[]
    for participant in skeleton_data_in_tasks_and_time_slices:

        #extract_traj_word_spatio_temporal_grid(participant, n_layer=1)
<<<<<<< HEAD
        feature_participant,orig_point_participant = extract_traj_word_temporal_window(participant, n_layer=1)
=======
        feature_participant,orig_point_participant,matrix_real_coord = extract_traj_word_temporal_window(participant, n_layer=2)
        final_matrix_realcoord.append(matrix_real_coord)
>>>>>>> 9348384985d2847c272133ff77ce6181ca1fa082
        final_matrix.append(feature_participant)
        final_orig_points.append(orig_point_participant)

    print len(final_matrix),len(final_orig_points)

    final_matrix=final_matrix+final_matrix_realcoord
    data_organizer.save_matrix_pickle(final_matrix, 'C:/Users/dario.dotti/Desktop/Hier_AE_deliverable/head_joint_id1/feature_matrix_participant_task_l2_new_realCoordinates.txt')
    #data_organizer.save_matrix_pickle(final_orig_points,
    #                                   'C:/Users/dario.dotti/Documents/data_for_personality_exp/after_data_cleaning/head_joint_id1/orig_points_participant_task_l2_new.txt')








if __name__ == '__main__':
        main_realtime_traj_dict()
def visualize_activations(matrix_activation):
    ### Training 625 matrix activation on shallow ae on only arms
    # participant_length = [0, 2197, 2082, 1873, 1595, 1779, 1991, 2148, 1702, 2484, 1744, 2902, 1947, 1860, 1743, 1645,
    #                       2398, 2287, 1998, 1573]
    # s = []
    # dim = 30
    # for l in xrange(1, len(participant_length)):
    #     slide = matrix_activation[participant_length[l - 1]:(participant_length[l - 1] + participant_length[l])]
    #
    #     for m in xrange(0, len(slide) - dim, dim):
    #         if len(s) > 0:
    #             s = np.vstack((s, matrix_activation[m:m + dim].reshape((1, -1))))
    #         else:
    #             s = matrix_activation[m:m + dim].reshape((1, -1))

    ### trained deep AE on upperBody
    participant_length = [
        0, 2876, 2394, 2256, 1998, 1887, 2597, 2703, 2105, 3137, 2190, 4072,
        2226, 2282, 2480, 2120, 2536, 2507, 2511, 1675
    ]
    s = []
    dim = 50
    for l in xrange(1, len(participant_length)):
        slide = matrix_activation[participant_length[l - 1]:(
            participant_length[l - 1] + participant_length[l])]

        for m in xrange(0, len(slide) - dim, dim):
            if len(s) > 0:
                s = np.vstack((s, matrix_activation[m:m + dim].reshape(
                    (1, -1))))
            else:
                s = matrix_activation[m:m + dim].reshape((1, -1))
    print s.shape
    #s = np.array(random.sample(matrix_activation, 30000))
    # kernel_bandwith = 5.1
    # X = img_processing.my_mean_shift(s, iterations=5, kernel_bandwith=kernel_bandwith)
    # print datetime.now().time()
    # my_kmean = KMeans(n_clusters=3, n_jobs=-1, algorithm='full')
    # X = my_kmean.fit(s)
    # means = np.mean(X,axis=1)

    pca = decomposition.PCA(
        n_components=100
    )  # 2-dimensional PCA whiten=True, svd_solver='randomized'

    s_t = pca.fit(s)
    data_organizer.save_matrix_pickle(
        s_t,
        'C:/Users/dario.dotti/Documents/data_for_personality_exp/after_data_cleaning/posture_data/upperBody/100pca_deep900225AE_5sec_data.txt'
    )
    s_t = pca.transform(s)
    #print s_t.shape
    print np.sum(pca.explained_variance_ratio_)
    # plt.bar(range(100), pca.explained_variance_ratio_)
    # plt.show()

    ## testing clustering
    #m_s = KMeans(n_clusters=10, n_jobs=-1)
    #m_s = MeanShift(n_jobs=-1,bandwidth=0.9)
    #m_s.fit(s_t)
    #s_t = s
    m_s = AgglomerativeClustering(n_clusters=15,
                                  affinity='cosine',
                                  linkage='average')
    m_s.fit(s_t)

    y_tr = m_s.fit_predict(s_t)
    print Counter(y_tr)
    ##since agglomerative clustering doesnt have predict I use svm with the cluster labels for classification
    clf = svm.LinearSVC().fit(s_t, y_tr)

    data_organizer.save_matrix_pickle(
        clf,
        'C:/Users/dario.dotti/Documents/data_for_personality_exp/after_data_cleaning/posture_data/linearSVM_agglomerative15c_5sec_100pca.txt'
    )
    #print 'file saved'

    colors = np.array(np.random.randint(0, 255, size=(20, 3))) / 255.0
    color_labels = [colors[p] for p in y_tr]

    ## 2D
    plt.scatter(s_t[:, 0], s_t[:, 1], c=color_labels)
    #plt.scatter(m_s[:, 0], m_s[:, 1], marker='^', c='r')
    plt.show()

    ##3D
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    ax.scatter(s_t[:, 0], s_t[:, 1], s_t[:, 2],
               c=color_labels)  # s_t[:, 1], s_t[:, 2],s_t[:,0]
    #ax.scatter(m_s[:, 0], m_s.means_[:, 1], m_s.means_[:, 2], marker='^', c='r')
    plt.show()

    return s, s_t, m_s, y_tr