def Evaluate(): open('input/points.csv',"w") labels = [['s.no', 'id']] for i in range(10000): labels[0].append('x'+ str(i+1)) labels[0].append('y'+ str(i+1)) csvData = labels with open('input/points.csv', 'w') as csvFile: writer = csv.writer(csvFile) writer.writerows(csvData) filepath = os.path.join(app.config['UPLOAD_FOLDER'], "input.txt") fo = open(os.path.join(app.config['UPLOAD_FOLDER'], "input.txt"), "r") filename = os.path.basename(fo.name) test = "HEGSE" csv_list = [] if filename.find(test) == -1: # sno = sno+1 return_list = getpoints(filepath,1) csv_list.append(return_list) with open('input/points.csv',"a") as csvFile: writer = csv.writer(csvFile) writer.writerows(csv_list) getvalues=[0,0,0,0] pathtocsv = os.path.join(app.config['UPLOAD_FOLDER'], "points.csv") pathtoMODEL = os.path.join(app.config['MODEL_FOLDER'], "") typ="" typ, data_x, scaler_rob_x, X, fid = data_pre(pathtocsv, pathtoMODEL) getvalues= get_val(data_x, typ, scaler_rob_x, X,pathtoMODEL) if(typ == "on"): k = "ON" else: k="OFF" emit('Predict',{ 'typ': str( k), 'val2': float(getvalues[1]), 'val3':float(getvalues[2]), 'val4': float(getvalues[3]), 'fid': str(fid) }) emit("Y")
def train_model(self, train_x, train_y): # train_y = train_y['0'].values train_y = tf.one_hot(train_y, depth=2) tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=data_pre().loadLog() + "people_npz-32-8-2", histogram_freq=1) network = Sequential([ layers.Dense(32, activation="sigmoid"), # layers.Dense(16, activation="sigmoid"), layers.Dense(8, activation="sigmoid"), layers.Dense(2) ]) network.build(input_shape=(None, 400)) network.summary() network.compile(optimizer=optimizers.Adam(0.001), loss=losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy']) checkpoint = tf.keras.callbacks.ModelCheckpoint( filepath='my_model.h5', monitor='val_loss', verbose=1, save_weights_only=False, save_best_only=True, mode='min', ) network.fit(x=train_x, y=train_y, epochs=100, validation_split=0.1, validation_freq=1, verbose=1, callbacks=[checkpoint, tensorboard_callback]) print(network.predict(train_x[:200])) network.save("my_model_npz.h5")
test = "HEGSE" csv_list = [] if filename.find(test) == -1: # sno = sno+1 return_list = getpoints(filepath,1) csv_list.append(return_list) with open('input/points.csv',"a") as csvFile: writer = csv.writer(csvFile) writer.writerows(csv_list) getvalues=[0,0,0,0] pathtocsv = os.path.join(app.config['UPLOAD_FOLDER'], "points.csv") pathtoMODEL = os.path.join(app.config['MODEL_FOLDER'], "") typ="" typ, data_x, scaler_rob_x, X, fid = data_pre(pathtocsv, pathtoMODEL) getvalues= get_val(data_x, typ, scaler_rob_x, X,pathtoMODEL) if(typ == "on"): k = "ON" else: k="OFF" typ = str( k) val2 = float(getvalues[1]) val3 = float(getvalues[2])
from data_pre import data_pre import lightgbm as lgb import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold import xgboost as xgb train, test = data_pre() label = train['收率'] test_id = test['样本id'] del test['样本id'] del test['收率'] del train['样本id'] del train['收率'] train.fillna(-1, inplace=True) test.fillna(-1, inplace=True) # 五折交叉验证 folds = KFold(n_splits=5, shuffle=True, random_state=2018) oof_lgb = np.zeros(len(train)) predictions_lgb = np.zeros(len(test)) param = { 'num_leaves': 120, 'min_data_in_leaf': 30, 'objective': 'regression', 'max_depth': -1, 'learning_rate': 0.01, "min_child_samples": 30,
network.compile(optimizer=optimizers.Adam(0.001), loss=losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy']) checkpoint = tf.keras.callbacks.ModelCheckpoint( filepath='my_model.h5', monitor='val_loss', verbose=1, save_weights_only=False, save_best_only=True, mode='min', ) network.fit(x=train_x, y=train_y, epochs=100, validation_split=0.1, validation_freq=1, verbose=1, callbacks=[checkpoint, tensorboard_callback]) print(network.predict(train_x[:200])) network.save("my_model_npz.h5") pass pass if __name__ == '__main__': npz_filepath = r"/home/jry/MicroWave_right_npz/mydataset.npz" # x, y = data_pre().loadData() x, y =data_pre().load_npz_data(path=npz_filepath) bp_model().train_model(train_x=x, train_y=y)