def train(corp, model, config):
    train_optimizer = optim.Adam(model.parameters(), lr=config.lr, weight_decay=config.l2_weight)
    # train_data: conv_vecs, conv_lens, conv_turn_lens, my_labels
    train_data = corp.train_data
    padded_quotes = corp.padded_quotes
    quote_lens = corp.quote_lens
    padded_exp = corp.padded_exp
    exp_lens = corp.exp_lens
    corp.test_corpus(config.valid_file, mode='VALID')
    valid_data = MyDataset(corp, config, 'VALID')
    valid_loader = data.DataLoader(valid_data, collate_fn=valid_data.my_collate, batch_size=config.batch_size,
                                   num_workers=0)
    best_state = None
    best_valid_thr = 0.0
    best_valid_map = -1.0
    best_valid_loss = 999999.99
    no_improve = 0

    for epoch in range(config.max_epoch):
        train_epoch(model, train_data, config.loss_weights, train_optimizer, epoch, config, padded_quotes, quote_lens, padded_exp, exp_lens)
        valid_map, valid_loss = valid_evaluate(model, valid_loader, config, padded_quotes, quote_lens, padded_exp, exp_lens)
        if best_valid_map < valid_map or best_valid_loss > valid_loss:
            no_improve = 0
            best_state = model.state_dict()
            if best_valid_map < valid_map:
                best_valid_map = valid_map
                print('New Best MAP Valid Result!!! Valid MAP: %g, Valid Loss: %g' % (valid_map, valid_loss))
            if best_valid_loss > valid_loss:
                best_valid_loss = valid_loss
                print('New Best Loss Valid Result!!! Valid MAP: %g, Valid Loss: %g' % (valid_map, valid_loss))
        else:
            no_improve += 1
            print(
                        'No improve! Current Valid MAP: %g, Best Valid AUC: %g;  Current Valid Loss: %g, Best Valid Loss: %g' % (
                valid_map, best_valid_map, valid_loss, best_valid_loss))
        if no_improve == 5:
            break
    model.load_state_dict(best_state)


    # Final step: Evaluate the model
    corp.test_corpus(config.test_file, mode='TEST')
    test_data = MyDataset(corp, config, 'TEST')
    test_loader = data.DataLoader(test_data, collate_fn=test_data.my_collate, batch_size=config.batch_size, num_workers=0)
    res = test_evaluate(model, test_loader, config, padded_quotes, quote_lens, padded_exp, exp_lens)
    print('Result in test set: MAP %g, P@1 %g, P@3 %g, nDCG@5 %g,nDCG@10 %g' % (res[0], res[1], res[2], res[3], res[4]))
    torch.save(model.state_dict(), config.path + 'map%.4f_p@1%.4f_best_seed%d.model' % (res[0], res[1], config.random_seed))
    with open(config.path + 'map%.4f_p@1%.4f_best_seed%d.res' % (res[0], res[1], config.random_seed), 'w') as f:
        f.write('MAP %g \t P@1 %g \t P@3 %g \t nDCG@5 %g\t nDCG@10 %g\n'% (res[0], res[1], res[2], res[3], res[4]))
        f.write('\n\nParameters:\n')
        for key in config.__dict__:
            f.write('%s : %s\n' % (key, config.__dict__[key]))
def predict(corp, model, config):
    # print attention weights
    assert config.print_attention
    if config.model_path is not None:
        print('Loading model from:', config.model_path)
        model.load_state_dict(torch.load(config.model_path, map_location='cpu'))
    print('Begin prediction!')
    corp.test_corpus(config.valid_file, mode='VALID')
    corp.test_corpus(config.test_file, mode='TEST')
    train_data = MyDataset(corp, config, 'TRAIN')
    train_loader = data.DataLoader(train_data, collate_fn=corp.train_data.my_collate, batch_size=config.batch_size, num_workers=0)
    print_attention(corp, model, train_loader, config)
Esempio n. 3
0
#-*-coding:utf8-*-

__author__ = "buyizhiyou"
__date__ = "2017-10-18"

from alexnet import AlexNet
import torch.optim as optim
import torch.nn as nn
from torch.autograd import Variable
from data_process import MyDataset
from torchvision import transforms, utils
from torch.utils.data import DataLoader
import torch

train_data = MyDataset(txt='./data/train.txt', transform=transforms.ToTensor())
train_loader = DataLoader(train_data, batch_size=50, shuffle=True)  #返回的是迭代器
test_data = MyDataset(txt='./data/val.txt', transform=transforms.ToTensor())
test_loader = DataLoader(test_data, batch_size=50)

model = AlexNet().cuda()  #使用gpu,将模型加载到显存
print(model)
#print(list(model.parameters()))
optimizer = optim.Adam(model.parameters(), lr=0.001)
loss_func = nn.CrossEntropyLoss()

#开始训练
for epoch in range(30):
    print('epoch {}'.format(epoch + 1))

    #training------------------------
    train_loss = 0
Esempio n. 4
0
def train(config):
    filename = config.filename
    modelname = config.modelname
    corp = Corpus(filename, config.max_word_num, config.pred_pc)
    config.user_num, config.conv_num, config.vocab_num = corp.userNum, corp.convNum, corp.wordNum
    config.sampling = True if 'reddit' in filename else False
    train_ratings, test_data, dev_data = form_dataset(corp, config.batch_size, sampling=config.sampling)
    if modelname != "NCF":
        conv_data = create_conv_data(corp.convs)
        if config.ncf_pretrained:
            ncf_path = "BestModels/NCF/For_pretrained/" + filename.split(".")[0] + "/" + str(config.factor_dim) + \
                       "_" + str(config.text_factor_dim) + "_" + str(config.pred_pc) + ".model"
            if torch.cuda.is_available():  # run in GPU
                weights = torch.load(ncf_path)
            else:
                weights = torch.load(ncf_path, map_location='cpu')
            ncf_weights = (weights['mf_user_embedding.weight'], weights['mf_conv_embedding.weight'], weights['mlp_user_embedding.weight'])
        else:
            ncf_weights = None
        if modelname == "NCFGCN" or modelname == "NCFGRN":
            arcs = create_arc_info(conv_data)
    if modelname == "NCF":
        embedding_matrix = None
    else:
        embedding_matrix = create_embedding_matrix(filename, corp, config.embedding_dim)

    if modelname == 'NCF':
        model = NCF(config)
        path_name = str(config.pred_pc) + "_" + str(config.batch_size) + "_" + str(config.factor_dim) + "_" + \
            str(config.text_factor_dim) + "_" + str(config.mlp_layers_num) + "_" + str(config.neg_sample_num) + "_" + \
            str(config.lr) + "_" + str(int(config.pos_weight)) + "-" + str(config.runtime)
    elif modelname == 'NCFBiLSTM':
        model = NCFBiLSTM(config, conv_data, embedding_matrix, ncf_weights)
        path_name = str(config.pred_pc) + "_" + str(config.batch_size) + "_" + str(config.factor_dim) + "_" + \
            str(config.text_factor_dim) + "_" + str(config.kernal_num) + "_" + str(config.hidden_dim) + "_" + \
            str(config.mlp_layers_num) + "_" + str(config.neg_sample_num) + "_" + str(config.lr) + "_" + \
            str(int(config.pos_weight)) + "_" + ("bi" if config.bi_direction else "nbi") + "_" + \
            ("pt" if config.ncf_pretrained else "npt") + "-" + str(config.runtime)
    elif modelname == 'NCFGCN':
        model = NCFGModel(config, modelname, conv_data, arcs, embedding_matrix, ncf_weights)
        path_name = str(config.pred_pc) + "_" + str(config.batch_size) + "_" + str(config.factor_dim) + "_" + \
            str(config.text_factor_dim) + "_" + str(config.kernal_num) + "_" + str(config.hidden_dim) + "_" + \
            str(config.mlp_layers_num) + "_" + str(config.gcn_layers_num) + "_" + str(config.neg_sample_num) + \
            "_" + str(config.lr) + "_" + str(int(config.pos_weight)) + "_" + ("g" if config.use_gates else "ng") + "_" + \
            ("lstm" if config.use_lstm else "nlstm") + "_" + ("pt" if config.ncf_pretrained else "npt") + "-" + str(config.runtime)
    elif modelname == 'NCFGRN':
        model = NCFGModel(config, modelname, conv_data, arcs, embedding_matrix, ncf_weights)
        path_name = str(config.pred_pc) + "_" + str(config.batch_size) + "_" + str(config.factor_dim) + "_" + \
            str(config.text_factor_dim) + "_" + str(config.kernal_num) + "_" + str(config.hidden_dim) + "_" + \
            str(config.mlp_layers_num) + "_" + str(config.grn_states_num) + "_" + str(config.neg_sample_num) + "_" + \
            str(config.lr) + "_" + str(int(config.pos_weight)) + "_" + ("pt" if config.ncf_pretrained else "npt") + "-" + str(config.runtime)
    else:
        print 'Modelname Wrong!'
        exit()

    res_path = "BestResults/" + modelname + "/" + filename.split('.')[0] + "/"
    mod_path = "BestModels/" + modelname + "/" + filename.split('.')[0] + "/"
    if not os.path.isdir(res_path):
        os.makedirs(res_path)
    if not os.path.isdir(mod_path):
        os.makedirs(mod_path)
    mod_path += path_name + '.model'
    res_path += path_name + '.data'

    loss_weights = torch.Tensor([1, config.pos_weight])
    if torch.cuda.is_available():  # run in GPU
        model = model.cuda()
        loss_weights = loss_weights.cuda()
    if config.optim == 'adam':
        optimizer = optim.Adam(model.parameters(), lr=config.lr)
    else:
        optimizer = optim.SGD(model.parameters(), lr=config.lr)
    scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: 1.0 / ((epoch + 1) ** 0.5))
    # scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: 0.1 ** (epoch // 10))

    best_dev_map = -1.0
    best_epoch = -1
    no_improve = 0
    for epoch in range(config.max_epoch):
        scheduler.step()
        train_data = MyDataset(corp, train_ratings, config.neg_sample_num, True)
        train_loader = data.DataLoader(train_data, batch_size=config.batch_size, num_workers=0, shuffle=True)
        loss = train_epoch(model, train_loader, loss_weights, optimizer, epoch)
        dev_map = evaluate(model, dev_data, dev=True)
        if dev_map > best_dev_map:
            no_improve = 0
            best_dev_map = dev_map
            os.system('rm ' + mod_path)
            best_epoch = epoch
            print('New Best Dev!!! MAP: %g' % best_dev_map)
            torch.save(model.state_dict(), mod_path)
        else:
            no_improve += 1
            print('Current Best Dev MAP: %g, Dev MAP: %g' % (best_dev_map, dev_map))
        if no_improve > 8:
            break
    model.load_state_dict(torch.load(mod_path))
    res = evaluate(model, test_data)
    print('Result in test set: MAP: %g, Precision@1: %g, Precision@5: %g, nDCG@5: %g, nDCG@10: %g' %
          (res[0], res[1], res[2], res[3], res[4]))
    with open(res_path, 'w') as f:
        f.write('MAP: %g, Precision@1: %g, Precision@5: %g, nDCG@5: %g, nDCG@10: %g\n' %
                (res[0], res[1], res[2], res[3], res[4]))
        f.write('Dev MAP: %g\n' % best_dev_map)
        f.write('Best epoch: %d\n' % best_epoch)
Esempio n. 5
0
def train(config):
    print 'Start training: ' + config.filename + ' ' + config.modelname
    trainfile, testfile, validfile = find_files(config.filename, config.month_num)
    modelname = config.modelname
    # Process the corpus and prepare pretrained parameters (if any)
    corp = Corpus(trainfile, testfile, validfile)
    config.user_num, config.conv_num, config.vocab_num = corp.userNum, corp.convNum, corp.wordNum
    train_convs, train_convs_per_user, test_data, dev_data = form_dataset(corp, config.batch_size)
    conv_data = create_tensor(corp.convs)
    if config.pretrained_file == 'NULL':
        embedding_matrix = None
    else:
        embedding_matrix = create_pretrain_embeddings(corp, config.embedding_dim, config.pretrained_file)
    # Set the model and saving path
    if modelname == 'DCR':
        user_history = create_history_tensor(corp.userNum, corp.user_history)
        arcs = create_arc_info(conv_data, no_time=True)
        model = DCR(config, conv_data, user_history, arcs, embedding_matrix)
        path_name = str(config.batch_size) + "_" + str(config.factor_dim) + "_" + str(config.embedding_dim) + "_" + \
            str(config.kernal_num) + "_" + str(config.hidden_dim) + "_" + str(config.gcn_layers_num) + "_" + \
            str(config.neg_sample_num) + "_" + str(config.lr) + "_" + str(int(config.pos_weight)) + "_" + config.att
        if config.month_num != 4:
            path_name += "_" + str(config.month_num) + "m_" + str(config.runtime)
        else:
            path_name += "_" + str(config.runtime)
        if config.pretrained_file == 'NULL':
            path_name += "_npembed"
        if config.no_lstm:
            path_name += "_nlstm"
        if config.no_gcn:
            path_name += "_ngcn"
        if config.mlp_layers_num == 0:
            path_name += "_nmlp"
    else:
        print 'Modelname Wrong!'
        exit()
    res_path = "BestResults/" + modelname + "/" + config.filename + "/"
    mod_path = "BestModels/" + modelname + "/" + config.filename + "/"
    if not os.path.isdir(res_path):
        os.makedirs(res_path)
    if not os.path.isdir(mod_path):
        os.makedirs(mod_path)
    mod_path += path_name + '.model'
    res_path += path_name + '.data'

    # Set the optimizing parameters
    loss_weights = torch.Tensor([1, config.pos_weight])
    if torch.cuda.is_available():  # run in GPU
        model = model.cuda()
        loss_weights = loss_weights.cuda()
    if config.optim == 'adam':
        optimizer = optim.Adam(model.parameters(), lr=config.lr)
    else:
        optimizer = optim.SGD(model.parameters(), lr=config.lr)
    scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: 1.0 / ((epoch + 1) ** 0.5))
    best_dev_map = 0.0
    best_epoch = -1
    best_epoch_loss = 999999
    no_improve = 0
    # Begin training
    for epoch in range(config.max_epoch):
        train_data = MyDataset(train_convs, train_convs_per_user, train=True, num_sampling=config.neg_sample_num)
        train_loader = data.DataLoader(train_data, batch_size=config.batch_size, num_workers=0, shuffle=True)
        loss = train_epoch(model, train_loader, loss_weights, optimizer, epoch)
        dev_map = evaluate(model, dev_data, dev=True)
        if dev_map > best_dev_map:
            no_improve = 0
            best_dev_map = dev_map
            os.system('rm ' + mod_path)
            best_epoch = epoch
            best_epoch_loss = loss
            print('New Best Dev!!! MAP: %g' % best_dev_map)
            torch.save(model.state_dict(), mod_path)
        else:
            no_improve += 1
            print('Current Best Dev MAP: %g, Dev MAP: %g' % (best_dev_map, dev_map))
        if no_improve > 8:
            break
        scheduler.step()
    model.load_state_dict(torch.load(mod_path))
    # Evaluate and save results
    res = evaluate(model, test_data)
    print('Result in test set: MAP: %g, Precision@1: %g, Precision@5: %g, nDCG@5: %g, nDCG@10: %g, MRR: %g' %
          (res[0], res[1], res[2], res[3], res[4], res[5]))
    with open(res_path, 'w') as f:
        f.write('MAP\tPre@1\tPre@5\tnDCG@5\tnDCG@10\tMRR\n')
        f.write('%g\t%g\t%g\t%g\t%g\t%g\n' % (res[0], res[1], res[2], res[3], res[4], res[5]))
        if modelname != "Pop" and modelname != "Random":
            f.write('Dev MAP: %g\n' % best_dev_map)
            f.write('Best epoch: %d\n' % best_epoch)
            f.write('Best epoch loss: %g\n' % best_epoch_loss)