end_range = n * leaf_size + start_range + 1 pixel_range = np.arange(start_range, end_range, leaf_size) sample_range_x = np.round(grid_x, 1) sample_range_y = np.round(grid_y, 1) plt.xticks(pixel_range, sample_range_x) plt.yticks(pixel_range, sample_range_y) plt.xlabel("z[0]") plt.ylabel("z[1]") plt.imshow(figure, cmap='Greys_r') plt.savefig(filename) plt.show() ######## Code ######## # Set up the data given to us train_list, test_list, train_ids, test_ids, train, test, y, y_train, classes = data_setup.data( ) # fit_transform() calculates the mean and std and also centers and scales data x_train = StandardScaler().fit_transform(train) x_test = StandardScaler().fit_transform(test) # We need to reshape our images so they are all the same dimensions train_mod_list = data_setup.reshape_img(train_list, global_max_dim) test_mod_list = data_setup.reshape_img(test_list, global_max_dim) # Grab the dimensions we are using for our images image_size = global_max_dim # Find the flattened size original_dim = image_size * image_size # Set up our validation set (10% of data)
import model from matplotlib import pyplot as plt import cornerplot import time import json import os import csv start = time.time() n_params = len(parameters) output_directory = 'out/' os.makedirs(os.path.dirname(output_directory), exist_ok=True) x, x_full, opacity_grid, bin_indices, ydata, yerr, wavelength_centre, wavelength_err = data_setup.data( ) len_x = len(x) ## Run PyMultinest ## b = ns_setup.Priors(1, n_params) pymultinest.run( b.loglike, b.prior, n_params, loglike_args=[len_x, x_full, bin_indices, opacity_grid, ydata, yerr], outputfiles_basename=output_directory + planet_name + '_', resume=False, verbose=True, n_live_points=live) json.dump(parameters, open(output_directory + planet_name + '_params.json',
import model from matplotlib import pyplot as plt import cornerplot import time import json import os import csv start = time.time() n_params = len(parameters) output_directory = '/home/aline/Desktop/PhD/HELIOS-T-master/out/' os.makedirs(os.path.dirname(output_directory), exist_ok=True) x, x_full, integral_grid, bin_indices, ydata, yerr, wavelength_centre, wavelength_err = data_setup.data( ) len_x = len(x) ## Run PyMultinest ## b = ns_setup.Priors(1, n_params) pymultinest.run( b.loglike, b.prior, n_params, loglike_args=[len_x, x_full, bin_indices, integral_grid, ydata, yerr], outputfiles_basename=output_directory + planet_name + '_', resume=False, verbose=True, n_live_points=live) json.dump(parameters, open(output_directory + planet_name + '_params.json',