def Generator(restore_path, voc_path, csv_num, gen_num, mol_num): restore_from = restore_path # Read vocabulary from a file voc = Vocabulary(init_from_file=voc_path) for n in range(0, csv_num): Prior = RNN(voc) if restore_from: Prior.rnn.load_state_dict(torch.load(restore_from)) seqs, likelihood, _ = Prior.sample(gen_num) valid = 0 smiles = [] val_smi = [] for i, seq in enumerate(seqs.cpu().numpy()): smile = voc.decode(seq) smiles.append(smile) if Chem.MolFromSmiles(smile): valid += 1 val_smi.append(smile) if i < mol_num: print(smile) Val_s = pd.DataFrame(data=val_smi, columns=['smiles']) Val_s.to_csv('./model/data_gen_' + str(n) + '.csv', index=False) print(valid) gc.collect()
def pretrain(restore_from=None): """Trains the Prior RNN""" # Read vocabulary from a file voc = Vocabulary(init_from_file="data/Voc") # Create a Dataset from a SMILES file moldata = MolData("data/mols_filtered.smi", voc) data = DataLoader(moldata, batch_size=128, shuffle=True, drop_last=True, collate_fn=MolData.collate_fn) Prior = RNN(voc) # Can restore from a saved RNN if restore_from: Prior.rnn.load_state_dict(torch.load(restore_from)) optimizer = torch.optim.Adam(Prior.rnn.parameters(), lr=0.001) for epoch in range(1, 6): # When training on a few million compounds, this model converges # in a few of epochs or even faster. If model sized is increased # its probably a good idea to check loss against an external set of # validation SMILES to make sure we dont overfit too much. for step, batch in tqdm(enumerate(data), total=len(data)): # Sample from DataLoader seqs = batch.long() # Calculate loss log_p, _ = Prior.likelihood(seqs) loss = -log_p.mean() # Calculate gradients and take a step optimizer.zero_grad() loss.backward() optimizer.step() # Every 500 steps we decrease learning rate and print some information if step % 500 == 0 and step != 0 and False: decrease_learning_rate(optimizer, decrease_by=0.03) tqdm.write("*" * 50) tqdm.write( "Epoch {:3d} step {:3d} loss: {:5.2f}\n".format( epoch, step, loss.data[0])) seqs, likelihood, _ = Prior.sample(128) valid = 0 for i, seq in enumerate(seqs.cpu().numpy()): smile = voc.decode(seq) if Chem.MolFromSmiles(smile): valid += 1 if i < 5: tqdm.write(smile) tqdm.write("\n{:>4.1f}% valid SMILES".format(100 * valid / len(seqs))) tqdm.write("*" * 50 + "\n")
def train_model(): """Do transfer learning for generating SMILES""" voc = Vocabulary(init_from_file='data/Voc') cano_smi_file('refined_smii.csv', 'refined_smii_cano.csv') moldata = MolData('refined_smii_cano.csv', voc) # Monomers 67 and 180 were removed because of the unseen [C-] in voc # DAs containing [se] [SiH2] [n] removed: 38 molecules data = DataLoader(moldata, batch_size=64, shuffle=True, drop_last=False, collate_fn=MolData.collate_fn) transfer_model = RNN(voc) if torch.cuda.is_available(): transfer_model.rnn.load_state_dict(torch.load('data/Prior.ckpt')) else: transfer_model.rnn.load_state_dict( torch.load('data/Prior.ckpt', map_location=lambda storage, loc: storage)) # for param in transfer_model.rnn.parameters(): # param.requires_grad = False optimizer = torch.optim.Adam(transfer_model.rnn.parameters(), lr=0.001) for epoch in range(1, 10): for step, batch in tqdm(enumerate(data), total=len(data)): seqs = batch.long() log_p, _ = transfer_model.likelihood(seqs) loss = -log_p.mean() optimizer.zero_grad() loss.backward() optimizer.step() if step % 5 == 0 and step != 0: decrease_learning_rate(optimizer, decrease_by=0.03) tqdm.write('*' * 50) tqdm.write( "Epoch {:3d} step {:3d} loss: {:5.2f}\n".format( epoch, step, loss.data[0])) seqs, likelihood, _ = transfer_model.sample(128) valid = 0 for i, seq in enumerate(seqs.cpu().numpy()): smile = voc.decode(seq) if Chem.MolFromSmiles(smile): valid += 1 if i < 5: tqdm.write(smile) tqdm.write("\n{:>4.1f}% valid SMILES".format(100 * valid / len(seqs))) tqdm.write("*" * 50 + '\n') torch.save(transfer_model.rnn.state_dict(), "data/transfer_model2.ckpt") torch.save(transfer_model.rnn.state_dict(), "data/transfer_modelw.ckpt")
def main(voc_file='data/Voc', restore_model_from='data/Prior.ckpt', output_file='data/Prior_10k.smi', sample_size=10000): voc = Vocabulary(init_from_file=voc_file) print("Setting up networks") Agent = RNN(voc) if torch.cuda.is_available(): print("Cuda available, loading prior & agent") Agent.rnn.load_state_dict(torch.load(restore_model_from)) else: raise 'Cuda not available' SMILES = [] for n in tqdm(range(sample_size//100), total=sample_size//100): # Sample from Agent seqs, agent_likelihood, entropy = Agent.sample(100) # Remove duplicates, ie only consider unique seqs unique_idxs = unique(seqs) seqs = seqs[unique_idxs] agent_likelihood = agent_likelihood[unique_idxs] entropy = entropy[unique_idxs] smiles = seq_to_smiles(seqs, voc) SMILES += smiles if not os.path.exists(os.path.dirname(output_file)): os.makedirs(os.path.dirname(output_file)) with open(output_file, "wt") as f: [f.write(smi + '\n') for smi in SMILES] return
def generate_smiles(n_smiles=500, restore_from="data/Prior.ckpt", voc_file="data/Voc", embedding_size=128): """ This function takes a checkpoint for a trained RNN and the vocabulary file and generates n_smiles new smiles strings. """ n = 32 n_smiles = n_smiles - n_smiles % n print("Generating %i smiles" % n_smiles) voc = Vocabulary(init_from_file=voc_file) generator = RNN(voc, embedding_size) if torch.cuda.is_available(): generator.rnn.load_state_dict(torch.load(restore_from)) else: generator.rnn.load_state_dict( torch.load(restore_from, map_location=lambda storage, loc: storage)) all_smiles = [] for i in range(int(n_smiles / n)): sequences, _, _ = generator.sample(n) smiles = seq_to_smiles(sequences, voc) all_smiles += smiles # Freeing up memory del generator torch.cuda.empty_cache() return all_smiles
def black_box(load_weights='./data/Prior.ckpt', batch_size=1): # Read vocabulary from a file voc = Vocabulary(init_from_file="data/Voc") vec_file = "data/vecs.dat" _, mew, std = get_latent_vector(None, vec_file, moments=True) vector = np.array([4.2619, 214.96, 512.07, 0.0, 1.0, 0.088, 7.0, 5.0, 100.01, 60.95, 7.0, 5.0, 2.0, 2.0, 2.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 9.0, 10.0, 0.0, 4.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 23.0, 0.0, 0.0, 25.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 3.0, 0.0, 0.0, 0.0, 34.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 14.0, 8.0, 0.0, 0.0, 2.0, 3.0, 0.0, 2.0, 0.0, 9.0, 0.0, 0.0, 9.0, 0.0, 0.0, 0.0, 0.0, 8.0, 9.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 1.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 1.0, 0.0, 6.0, 0.0, 2.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 3.0, 28.0, 1.0, 5.0, 0.0, 2.0, 10.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.0, 0.0, 2.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 8.0, 1.0, 0.0, 4.0, 0.0, 0.0, 0.0, 2.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 13.0, 0.0, 0.0, 0.0, 5.0, 0.0, 5.0, 7.0, 4.0, 2.0, 0.0, 16.0, 20.0, 43.0, 83.0, 90.0, 23.0, 8.0, 37.0, 5.0, 24.0, 5.0, 4.0, 16.0, 5.0, 25.0, 93.0, 92.0, 38.0, 0.0, 0.0, 0.0, 4.0]) vector = (vector - mew) / std data = [vector] Prior = RNN(voc, len(data[0])) # By default restore Agent to same model as Prior, but can restore from already trained Agent too. # Saved models are partially on the GPU, but if we dont have cuda enabled we can remap these # to the CPU. if torch.cuda.is_available(): Prior.rnn.load_state_dict(torch.load(load_weights)) else: Prior.rnn.load_state_dict(torch.load(load_weights, map_location=lambda storage, loc: storage)) for test_vec in data: print('Test vector {}'.format(test_vec)) test_vec = Variable(test_vec).float() valid = 0 num_smi = 100 all_smi = [] for i in range(num_smi): seqs, prior_likelihood, entropy = Prior.sample(batch_size, test_vec) smiles = seq_to_smiles(seqs, voc)[0] if Chem.MolFromSmiles(smiles): valid += 1 all_smi.append(smiles) for smi in all_smi: print(smi) print("\n{:>4.1f}% valid SMILES".format(100 * valid / len(range(num_smi))))
def hill_climbing(pattern=None, restore_agent_from='data/Prior.ckpt', scoring_function='tanimoto', scoring_function_kwargs=None, save_dir=None, learning_rate=0.0005, batch_size=64, n_steps=10, num_processes=0, use_custom_voc="data/Voc"): voc = Vocabulary(init_from_file=use_custom_voc) start_time = time.time() if pattern: Agent = scaffold_constrained_RNN(voc) else: Agent = RNN(voc) logger = VizardLog('data/logs') if torch.cuda.is_available(): Agent.rnn.load_state_dict(torch.load(restore_agent_from)) else: Agent.rnn.load_state_dict( torch.load(restore_agent_from, map_location=lambda storage, loc: storage)) optimizer = torch.optim.Adam(Agent.rnn.parameters(), lr=learning_rate) # Scoring_function scoring_function = get_scoring_function(scoring_function=scoring_function, num_processes=num_processes, **scoring_function_kwargs) # For policy based RL, we normally train on-policy and correct for the fact that more likely actions # occur more often (which means the agent can get biased towards them). Using experience replay is # therefor not as theoretically sound as it is for value based RL, but it seems to work well. experience = Experience(voc) # Log some network weights that can be dynamically plotted with the Vizard bokeh app logger.log(Agent.rnn.gru_2.weight_ih.cpu().data.numpy()[::100], "init_weight_GRU_layer_2_w_ih") logger.log(Agent.rnn.gru_2.weight_hh.cpu().data.numpy()[::100], "init_weight_GRU_layer_2_w_hh") logger.log(Agent.rnn.embedding.weight.cpu().data.numpy()[::30], "init_weight_GRU_embedding") logger.log(Agent.rnn.gru_2.bias_ih.cpu().data.numpy(), "init_weight_GRU_layer_2_b_ih") logger.log(Agent.rnn.gru_2.bias_hh.cpu().data.numpy(), "init_weight_GRU_layer_2_b_hh") # Information for the logger step_score = [[], []] print("Model initialized, starting training...") for step in range(n_steps): # Sample from Agent if pattern: seqs, agent_likelihood, entropy = Agent.sample(pattern, batch_size) else: seqs, agent_likelihood, entropy = Agent.sample(batch_size) gc.collect() # Remove duplicates, ie only consider unique seqs unique_idxs = unique(seqs) seqs = seqs[unique_idxs] agent_likelihood = agent_likelihood[unique_idxs] entropy = entropy[unique_idxs] # Get prior likelihood and score smiles = seq_to_smiles(seqs, voc) score = scoring_function(smiles) new_experience = zip(smiles, score, agent_likelihood) experience.add_experience(new_experience) indexes = np.flip(np.argsort(np.array(score))) # Train the agent for 10 epochs on hill-climbing procedure for epoch in range(10): loss = Variable(torch.zeros(1)) counter = 0 seen_seqs = [] for j in indexes: if counter > 50: break seq = seqs[j] s = smiles[j] if s not in seen_seqs: seen_seqs.append(s) log_p, _ = Agent.likelihood(Variable(seq).view(1, -1)) loss -= log_p.mean() counter += 1 loss /= counter optimizer.zero_grad() loss.backward() optimizer.step() # Print some information for this step time_elapsed = (time.time() - start_time) / 3600 time_left = (time_elapsed * ((n_steps - step) / (step + 1))) print( "\n Step {} Fraction valid SMILES: {:4.1f} Time elapsed: {:.2f}h Time left: {:.2f}h" .format(step, fraction_valid_smiles(smiles) * 100, time_elapsed, time_left)) print(" Agent Prior Target Score SMILES") for i in range(10): print(" {:6.2f} {}".format(score[i], smiles[i])) # Need this for Vizard plotting step_score[0].append(step + 1) step_score[1].append(np.mean(score)) # Log some weights logger.log(Agent.rnn.gru_2.weight_ih.cpu().data.numpy()[::100], "weight_GRU_layer_2_w_ih") logger.log(Agent.rnn.gru_2.weight_hh.cpu().data.numpy()[::100], "weight_GRU_layer_2_w_hh") logger.log(Agent.rnn.embedding.weight.cpu().data.numpy()[::30], "weight_GRU_embedding") logger.log(Agent.rnn.gru_2.bias_ih.cpu().data.numpy(), "weight_GRU_layer_2_b_ih") logger.log(Agent.rnn.gru_2.bias_hh.cpu().data.numpy(), "weight_GRU_layer_2_b_hh") logger.log("\n".join([smiles + "\t" + str(round(score, 2)) for smiles, score in zip \ (smiles[:12], score[:12])]), "SMILES", dtype="text", overwrite=True) logger.log(np.array(step_score), "Scores") # If the entire training finishes, we create a new folder where we save this python file # as well as some sampled sequences and the contents of the experinence (which are the highest # scored sequences seen during training) if not save_dir: save_dir = 'data/results/run_' + time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime()) try: os.makedirs(save_dir) except: print("Folder already existing... overwriting previous results") copyfile('train_agent.py', os.path.join(save_dir, "train_agent.py")) experience.print_memory(os.path.join(save_dir, "memory")) torch.save(Agent.rnn.state_dict(), os.path.join(save_dir, 'Agent.ckpt')) previous_smiles = [] with open(os.path.join(save_dir, "memory.smi"), 'w') as f: for i, exp in enumerate(experience.memory): try: if Chem.MolToSmiles( Chem.rdmolops.RemoveStereochemistry( Chem.MolFromSmiles( exp[0]))) not in previous_smiles: f.write("{}\n".format(exp[0])) previous_smiles.append( Chem.MolToSmiles( Chem.rdmolops.RemoveStereochemistry( Chem.MolFromSmiles(exp[0])))) except: pass
def train_agent(restore_prior_from='data/Prior.ckpt', restore_agent_from='data/Prior.ckpt', scoring_function='tanimoto', scoring_function_kwargs=None, save_dir=None, learning_rate=0.0005, batch_size=64, n_steps=3000, num_processes=0, sigma=60, experience_replay=0): voc = Vocabulary(init_from_file="data/Voc") start_time = time.time() Prior = RNN(voc) Agent = RNN(voc) logger = VizardLog('data/logs') # By default restore Agent to same model as Prior, but can restore from already trained Agent too. # Saved models are partially on the GPU, but if we dont have cuda enabled we can remap these # to the CPU. if torch.cuda.is_available(): Prior.rnn.load_state_dict(torch.load(restore_prior_from)) Agent.rnn.load_state_dict(torch.load(restore_agent_from)) else: Prior.rnn.load_state_dict( torch.load(restore_prior_from, map_location=lambda storage, loc: storage)) Agent.rnn.load_state_dict( torch.load(restore_agent_from, map_location=lambda storage, loc: storage)) # We dont need gradients with respect to Prior for param in Prior.rnn.parameters(): param.requires_grad = False optimizer = torch.optim.Adam(Agent.rnn.parameters(), lr=0.0005) # Scoring_function scoring_function = get_scoring_function(scoring_function=scoring_function, num_processes=num_processes, **scoring_function_kwargs) # For policy based RL, we normally train on-policy and correct for the fact that more likely actions # occur more often (which means the agent can get biased towards them). Using experience replay is # therefor not as theoretically sound as it is for value based RL, but it seems to work well. experience = Experience(voc) # Log some network weights that can be dynamically plotted with the Vizard bokeh app logger.log(Agent.rnn.gru_2.weight_ih.cpu().data.numpy()[::100], "init_weight_GRU_layer_2_w_ih") logger.log(Agent.rnn.gru_2.weight_hh.cpu().data.numpy()[::100], "init_weight_GRU_layer_2_w_hh") logger.log(Agent.rnn.embedding.weight.cpu().data.numpy()[::30], "init_weight_GRU_embedding") logger.log(Agent.rnn.gru_2.bias_ih.cpu().data.numpy(), "init_weight_GRU_layer_2_b_ih") logger.log(Agent.rnn.gru_2.bias_hh.cpu().data.numpy(), "init_weight_GRU_layer_2_b_hh") # Information for the logger step_score = [[], []] print("Model initialized, starting training...") for step in range(n_steps): # Sample from Agent seqs, agent_likelihood, entropy = Agent.sample(batch_size) # Remove duplicates, ie only consider unique seqs unique_idxs = unique(seqs) seqs = seqs[unique_idxs] agent_likelihood = agent_likelihood[unique_idxs] entropy = entropy[unique_idxs] # Get prior likelihood and score prior_likelihood, _ = Prior.likelihood(Variable(seqs)) smiles = seq_to_smiles(seqs, voc) score = scoring_function(smiles) # Calculate augmented likelihood augmented_likelihood = prior_likelihood + sigma * Variable(score) loss = torch.pow((augmented_likelihood - agent_likelihood), 2) # Experience Replay # First sample if experience_replay and len(experience) > 4: exp_seqs, exp_score, exp_prior_likelihood = experience.sample(4) exp_agent_likelihood, exp_entropy = Agent.likelihood( exp_seqs.long()) exp_augmented_likelihood = exp_prior_likelihood + sigma * exp_score exp_loss = torch.pow( (Variable(exp_augmented_likelihood) - exp_agent_likelihood), 2) loss = torch.cat((loss, exp_loss), 0) agent_likelihood = torch.cat( (agent_likelihood, exp_agent_likelihood), 0) # Then add new experience prior_likelihood = prior_likelihood.data.cpu().numpy() new_experience = zip(smiles, score, prior_likelihood) experience.add_experience(new_experience) # Calculate loss loss = loss.mean() # Add regularizer that penalizes high likelihood for the entire sequence loss_p = -(1 / agent_likelihood).mean() loss += 5 * 1e3 * loss_p # Calculate gradients and make an update to the network weights optimizer.zero_grad() loss.backward() optimizer.step() # Convert to numpy arrays so that we can print them augmented_likelihood = augmented_likelihood.data.cpu().numpy() agent_likelihood = agent_likelihood.data.cpu().numpy() # Print some information for this step time_elapsed = (time.time() - start_time) / 3600 time_left = (time_elapsed * ((n_steps - step) / (step + 1))) print( "\n Step {} Fraction valid SMILES: {:4.1f} Time elapsed: {:.2f}h Time left: {:.2f}h" .format(step, fraction_valid_smiles(smiles) * 100, time_elapsed, time_left)) print(" Agent Prior Target Score SMILES") for i in range(10): print(" {:6.2f} {:6.2f} {:6.2f} {:6.2f} {}".format( agent_likelihood[i], prior_likelihood[i], augmented_likelihood[i], score[i], smiles[i])) # Need this for Vizard plotting step_score[0].append(step + 1) step_score[1].append(np.mean(score)) # Log some weights logger.log(Agent.rnn.gru_2.weight_ih.cpu().data.numpy()[::100], "weight_GRU_layer_2_w_ih") logger.log(Agent.rnn.gru_2.weight_hh.cpu().data.numpy()[::100], "weight_GRU_layer_2_w_hh") logger.log(Agent.rnn.embedding.weight.cpu().data.numpy()[::30], "weight_GRU_embedding") logger.log(Agent.rnn.gru_2.bias_ih.cpu().data.numpy(), "weight_GRU_layer_2_b_ih") logger.log(Agent.rnn.gru_2.bias_hh.cpu().data.numpy(), "weight_GRU_layer_2_b_hh") logger.log("\n".join([smiles + "\t" + str(round(score, 2)) for smiles, score in zip \ (smiles[:12], score[:12])]), "SMILES", dtype="text", overwrite=True) logger.log(np.array(step_score), "Scores") # If the entire training finishes, we create a new folder where we save this python file # as well as some sampled sequences and the contents of the experinence (which are the highest # scored sequences seen during training) if not save_dir: save_dir = 'data/results/run_' + time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime()) os.makedirs(save_dir) copyfile('train_agent.py', os.path.join(save_dir, "train_agent.py")) experience.print_memory(os.path.join(save_dir, "memory")) torch.save(Agent.rnn.state_dict(), os.path.join(save_dir, 'Agent.ckpt')) seqs, agent_likelihood, entropy = Agent.sample(256) prior_likelihood, _ = Prior.likelihood(Variable(seqs)) prior_likelihood = prior_likelihood.data.cpu().numpy() smiles = seq_to_smiles(seqs, voc) score = scoring_function(smiles) with open(os.path.join(save_dir, "sampled"), 'w') as f: f.write("SMILES Score PriorLogP\n") for smiles, score, prior_likelihood in zip(smiles, score, prior_likelihood): f.write("{} {:5.2f} {:6.2f}\n".format(smiles, score, prior_likelihood))
def train_model(voc_dir, smi_dir, prior_dir, tf_dir, tf_process_dir, freeze=False): """ Transfer learning on target molecules using the SMILES structures Args: voc_dir: location of the vocabulary smi_dir: location of the SMILES file used for transfer learning prior_dir: location of prior trained model to initialize transfer learning tf_dir: location to save the transfer learning model tf_process_dir: location to save the SMILES sampled while doing transfer learning freeze: Bool. If true, all parameters in the RNN will be frozen except for the last linear layer during transfer learning. Returns: None """ voc = Vocabulary(init_from_file=voc_dir) #cano_smi_file('all_smi_refined.csv', 'all_smi_refined_cano.csv') moldata = MolData(smi_dir, voc) # Monomers 67 and 180 were removed because of the unseen [C-] in voc # DAs containing [C] removed: 43 molecules in 5356; Ge removed: 154 in 5356; [c] removed 4 in 5356 # [S] 1 molecule in 5356 data = DataLoader(moldata, batch_size=64, shuffle=True, drop_last=False, collate_fn=MolData.collate_fn) transfer_model = RNN(voc) # if freeze=True, freeze all parameters except those in the linear layer if freeze: for param in transfer_model.rnn.parameters(): param.requires_grad = False transfer_model.rnn.linear = nn.Linear(512, voc.vocab_size) if torch.cuda.is_available(): transfer_model.rnn.load_state_dict(torch.load(prior_dir)) else: transfer_model.rnn.load_state_dict( torch.load(prior_dir, map_location=lambda storage, loc: storage)) optimizer = torch.optim.Adam(transfer_model.rnn.parameters(), lr=0.0005) smi_lst = [] epoch_lst = [] for epoch in range(1, 11): for step, batch in tqdm(enumerate(data), total=len(data)): seqs = batch.long() log_p, _ = transfer_model.likelihood(seqs) loss = -log_p.mean() optimizer.zero_grad() loss.backward() optimizer.step() if step % 80 == 0 and step != 0: decrease_learning_rate(optimizer, decrease_by=0.03) tqdm.write('*' * 50) tqdm.write( "Epoch {:3d} step {:3d} loss: {:5.2f}\n".format( epoch, step, loss.data[0])) seqs, likelihood, _ = transfer_model.sample(128) valid = 0 for i, seq in enumerate(seqs.cpu().numpy()): smile = voc.decode(seq) if Chem.MolFromSmiles(smile): valid += 1 if i < 5: tqdm.write(smile) tqdm.write("\n{:>4.1f}% valid SMILES".format(100 * valid / len(seqs))) tqdm.write("*" * 50 + '\n') torch.save(transfer_model.rnn.state_dict(), tf_dir) seqs, likelihood, _ = transfer_model.sample(1024) valid = 0 #valid_smis = [] for i, seq in enumerate(seqs.cpu().numpy()): smile = voc.decode(seq) if Chem.MolFromSmiles(smile): try: AllChem.GetMorganFingerprintAsBitVect( Chem.MolFromSmiles(smile), 2, 1024) valid += 1 smi_lst.append(smile) epoch_lst.append(epoch) except: continue torch.save(transfer_model.rnn.state_dict(), tf_dir) transfer_process_df = pd.DataFrame(columns=['SMILES', 'Epoch']) transfer_process_df['SMILES'] = pd.Series(data=smi_lst) transfer_process_df['Epoch'] = pd.Series(data=epoch_lst) transfer_process_df.to_csv(tf_process_dir)
def sample_smiles(voc_dir, nums, outfn, tf_dir, until=False): """Sample smiles using the transferred model""" voc = Vocabulary(init_from_file=voc_dir) transfer_model = RNN(voc) output = open(outfn, 'w') if torch.cuda.is_available(): transfer_model.rnn.load_state_dict(torch.load(tf_dir)) else: transfer_model.rnn.load_state_dict( torch.load(tf_dir, map_location=lambda storage, loc: storage)) for param in transfer_model.rnn.parameters(): param.requires_grad = False if not until: seqs, likelihood, _ = transfer_model.sample(nums) valid = 0 double_br = 0 unique_idx = unique(seqs) seqs = seqs[unique_idx] for i, seq in enumerate(seqs.cpu().numpy()): smile = voc.decode(seq) if Chem.MolFromSmiles(smile): try: AllChem.GetMorganFingerprintAsBitVect( Chem.MolFromSmiles(smile), 2, 1024) valid += 1 output.write(smile + '\n') except: continue #if smile.count('Br') == 2: # double_br += 1 #output.write(smile+'\n') tqdm.write( '\n{} molecules sampled, {} valid SMILES, {} with double Br'. format(nums, valid, double_br)) output.close() else: valid = 0 n_sample = 0 while valid < nums: seq, likelihood, _ = transfer_model.sample(1) n_sample += 1 seq = seq.cpu().numpy() seq = seq[0] # print(seq) smile = voc.decode(seq) if Chem.MolFromSmiles(smile): try: AllChem.GetMorganFingerprintAsBitVect( Chem.MolFromSmiles(smile), 2, 1024) valid += 1 output.write(smile + '\n') #if valid % 100 == 0 and valid != 0: # tqdm.write('\n{} valid molecules sampled, with {} of total samples'.format(valid, n_sample)) except: continue tqdm.write( '\n{} valid molecules sampled, with {} of total samples'.format( nums, n_sample))
def train_agent(restore_prior_from='data/Prior.ckpt', restore_agent_from='data/Prior.ckpt', voc_file='data/Voc', molscore_config=None, learning_rate=0.0005, batch_size=64, n_steps=3000, sigma=60, experience_replay=0): voc = Vocabulary(init_from_file=voc_file) start_time = time.time() # Scoring_function scoring_function = MolScore(molscore_config) scoring_function.log_parameters({'batch_size': batch_size, 'sigma': sigma}) print("Building RNNs") Prior = RNN(voc) Agent = RNN(voc) # By default restore Agent to same model as Prior, but can restore from already trained Agent too. # Saved models are partially on the GPU, but if we dont have cuda enabled we can remap these # to the CPU. if torch.cuda.is_available(): print("Cuda available, loading prior & agent") Prior.rnn.load_state_dict(torch.load(restore_prior_from)) Agent.rnn.load_state_dict(torch.load(restore_agent_from)) else: print("Cuda not available, remapping to cpu") Prior.rnn.load_state_dict(torch.load(restore_prior_from, map_location=lambda storage, loc: storage)) Agent.rnn.load_state_dict(torch.load(restore_agent_from, map_location=lambda storage, loc: storage)) # We dont need gradients with respect to Prior for param in Prior.rnn.parameters(): param.requires_grad = False optimizer = torch.optim.Adam(Agent.rnn.parameters(), lr=learning_rate) # For logging purposes let's save some training parameters not captured by molscore with open(os.path.join(scoring_function.save_dir, 'reinvent_parameters.txt'), 'wt') as f: [f.write(f'{p}: {v}\n') for p, v in {'learning_rate': learning_rate, 'batch_size': batch_size, 'n_steps': n_steps, 'sigma': sigma, 'experience_replay': experience_replay}.items()] # For policy based RL, we normally train on-policy and correct for the fact that more likely actions # occur more often (which means the agent can get biased towards them). Using experience replay is # therefore not as theoretically sound as it is for value based RL, but it seems to work well. experience = Experience(voc) print("Model initialized, starting training...") for step in range(n_steps): # Sample from Agent seqs, agent_likelihood, entropy = Agent.sample(batch_size) # Remove duplicates, ie only consider unique seqs unique_idxs = unique(seqs) seqs = seqs[unique_idxs] agent_likelihood = agent_likelihood[unique_idxs] entropy = entropy[unique_idxs] # Get prior likelihood and score prior_likelihood, _ = Prior.likelihood(Variable(seqs)) smiles = seq_to_smiles(seqs, voc) # Using molscore instead here try: score = scoring_function(smiles, step=step) augmented_likelihood = prior_likelihood + sigma * Variable(score) except: # If anything goes wrong with molscore, write scores and save .ckpt and kill monitor with open(os.path.join(scoring_function.save_dir, f'failed_smiles_{scoring_function.step}.smi'), 'wt') as f: [f.write(f'{smi}\n') for smi in smiles] torch.save(Agent.rnn.state_dict(), os.path.join(scoring_function.save_dir, f'Agent_{step}.ckpt')) scoring_function.write_scores() scoring_function.kill_dash_monitor() raise # Calculate loss loss = torch.pow((augmented_likelihood - agent_likelihood), 2) # Experience Replay # First sample if experience_replay and len(experience)>4: exp_seqs, exp_score, exp_prior_likelihood = experience.sample(4) exp_agent_likelihood, exp_entropy = Agent.likelihood(exp_seqs.long()) exp_augmented_likelihood = exp_prior_likelihood + sigma * exp_score exp_loss = torch.pow((Variable(exp_augmented_likelihood) - exp_agent_likelihood), 2) loss = torch.cat((loss, exp_loss), 0) agent_likelihood = torch.cat((agent_likelihood, exp_agent_likelihood), 0) # Then add new experience prior_likelihood = prior_likelihood.data.cpu().numpy() new_experience = zip(smiles, score, prior_likelihood) experience.add_experience(new_experience) # Calculate loss loss = loss.mean() # Add regularizer that penalizes high likelihood for the entire sequence loss_p = - (1 / agent_likelihood).mean() loss += 5 * 1e3 * loss_p # Calculate gradients and make an update to the network weights optimizer.zero_grad() loss.backward() optimizer.step() # Convert to numpy arrays so that we can print them augmented_likelihood = augmented_likelihood.data.cpu().numpy() agent_likelihood = agent_likelihood.data.cpu().numpy() # Print some information for this step time_elapsed = (time.time() - start_time) / 3600 time_left = (time_elapsed * ((n_steps - step) / (step + 1))) print(f"\n Step {step} Fraction valid SMILES: {fraction_valid_smiles(smiles) * 100:4.1f}\ Time elapsed: {time_elapsed:.2f}h Time left: {time_left:.2f}h") print(" Agent Prior Target Score SMILES") for i in range(10): print(f" {agent_likelihood[i]:6.2f} {prior_likelihood[i]:6.2f} {augmented_likelihood[i]:6.2f} {score[i]:6.2f} {smiles[i]}") # Save the agent weights every 250 iterations #### if step % 250 == 0 and step != 0: torch.save(Agent.rnn.state_dict(), os.path.join(scoring_function.save_dir, f'Agent_{step}.ckpt')) # If the entire training finishes, write out MolScore dataframe, kill dash_utils monitor and # save the final Agent.ckpt torch.save(Agent.rnn.state_dict(), os.path.join(scoring_function.save_dir, f'Agent_{n_steps}.ckpt')) scoring_function.write_scores() scoring_function.kill_dash_monitor() return
from model import RNN from data_structs import Vocabulary, Experience from scoring_functions import get_scoring_function from util import Variable, seq_to_smiles, fraction_valid_smiles, unique from vizard_logger import VizardLog def train_agent(restore_prior_from='data/Prior.ckpt', restore_agent_from='data/Prior.ckpt', scoring_function='tanimoto', scoring_function_kwargs=None, save_dir=None, learning_rate=0.0005, batch_size=64, n_steps=3000, num_processes=0, sigma=60, experience_replay=0 ) voc = Vocabulary(init_from_file='data/Voc') start_time = time.time() Prior = RNN(voc) Agent = RNN(voc) logger = VizardLog('data/logs') # By default restore Agent to same model as Prior, but can restore from already trained Agent too. # Saved models are partially on the GPU, but if we dont have cuda enabled we can remap these # to the CPU. if torch.cuda.is_available(): Prior.rnn.load_state_dict(torch.load('data/Prior.ckpt')) Agent.rnn.load_state_dict(torch.load(restore_agent_from))
def pretrain(restore_from=None, save_to="data/Prior.ckpt", data="data/mols_filtered.smi", voc_file="data/Voc", batch_size=128, learning_rate=0.001, n_epochs=5, store_loss_dir=None, embedding_size=32): """Trains the Prior RNN""" # Read vocabulary from a file voc = Vocabulary(init_from_file=voc_file) # Create a Dataset from a SMILES file moldata = MolData(data, voc) data = DataLoader(moldata, batch_size=batch_size, shuffle=True, drop_last=True, collate_fn=MolData.collate_fn) Prior = RNN(voc, embedding_size) # Adding a file to log loss info if store_loss_dir is None: out_f = open("loss.csv", "w") else: out_f = open("{}/loss.csv".format(store_loss_dir.rstrip("/")), "w") out_f.write("Step,Loss\n") # Can restore from a saved RNN if restore_from: Prior.rnn.load_state_dict(torch.load(restore_from)) # For later plotting the loss training_step_counter = 0 n_logging = 100 optimizer = torch.optim.Adam(Prior.rnn.parameters(), lr=learning_rate) for epoch in range(1, n_epochs + 1): # When training on a few million compounds, this model converges # in a few of epochs or even faster. If model sized is increased # its probably a good idea to check loss against an external set of # validation SMILES to make sure we dont overfit too much. for step, batch in tqdm(enumerate(data), total=len(data)): # Sample from DataLoader seqs = batch.long() # Calculate loss log_p, _ = Prior.likelihood(seqs) loss = -log_p.mean() # Calculate gradients and take a step optimizer.zero_grad() loss.backward() optimizer.step() # Logging the loss to a file if training_step_counter % n_logging == 0: out_f.write("{},{}\n".format(step, loss)) training_step_counter += 1 # Every 500 steps we decrease learning rate and print some information if step % 500 == 0 and step != 0: decrease_learning_rate(optimizer, decrease_by=0.03) tqdm.write("*" * 50) tqdm.write( "Epoch {:3d} step {:3d} loss: {:5.2f}\n".format( epoch, step, loss.data)) seqs, likelihood, _ = Prior.sample(128) valid = 0 for i, seq in enumerate(seqs.cpu().numpy()): smile = voc.decode(seq) if Chem.MolFromSmiles(smile): valid += 1 if i < 5: tqdm.write(smile) tqdm.write("\n{:>4.1f}% valid SMILES".format(100 * valid / len(seqs))) tqdm.write("*" * 50 + "\n") torch.save(Prior.rnn.state_dict(), save_to) # Save the Prior torch.save(Prior.rnn.state_dict(), save_to) f_out.close()
copyfile('train_agent.py', os.path.join(save_dir, "train_agent.py")) experience.print_memory(os.path.join(save_dir, "memory")) torch.save(Agent.rnn.state_dict(), os.path.join(save_dir, 'Agent.ckpt')) seqs, agent_likelihood, entropy = Agent.sample(batch_size, real_vecs) prior_likelihood, _ = Prior.likelihood(Variable(seqs)) prior_likelihood = prior_likelihood.data.cpu().numpy() smiles = seq_to_smiles(seqs, voc) score = scoring_function(smiles) with open(os.path.join(save_dir, "sampled"), 'w') as f: f.write("SMILES Score PriorLogP\n") for smiles, score, prior_likelihood in zip(smiles, score, prior_likelihood): f.write("{} {:5.2f} {:6.2f}\n".format(smiles, score, prior_likelihood)) if __name__ == "__main__": voc = Vocabulary(init_from_file="data/Voc") # Create a Dataset from a SMILES file if path.isfile('./data/agent/vecs.dat'): print('Found vectors, reading from file...') data = Dataset(voc, "data/mols.smi", vec_file='./data/agent/vecs.dat') else: raise ValueError('No agent Data') mew = data.mew std = data.std train_agent(data=data, voc=voc, scoring_function_kwargs={'mew':mew, 'std':std})
def fit(voc_path, mol_path, restore_path, max_save_path, last_save_path, epoch_num, step_num, decay_step_num, smile_num, lr, weigth_decay): restore_from = restore_path # if not restore model print None # Read vocabulary from a file voc = Vocabulary(init_from_file=voc_path) # Create a Dataset from a SMILES file moldata = MolData(mol_path, voc) data = DataLoader(moldata, batch_size=128, shuffle=True, drop_last=True, collate_fn=MolData.collate_fn) Prior = RNN(voc) # Can restore from a saved RNN if restore_from: Prior.rnn.load_state_dict(torch.load(restore_from)) total_loss = [] total_valid = [] max_valid_pro = 0 optimizer = torch.optim.Adam(Prior.rnn.parameters(), lr=lr) for epoch in range(1, epoch_num): for step, batch in tqdm(enumerate(data), total=len(data)): # Sample from DataLoader seqs = batch.long() # Calculate loss log_p, _ = Prior.likelihood(seqs) loss = -log_p.mean() # Calculate gradients and take a step optimizer.zero_grad() loss.backward() optimizer.step() # Every 300 steps we decrease learning rate and print some information if step != 0 and step % decay_step_num == 0: decrease_learning_rate(optimizer, decrease_by=weigth_decay) if step % step_num == 0: tqdm.write("*" * 50) tqdm.write( "Epoch {:3d} step {:3d} loss: {:5.2f}\n".format( epoch, step, loss)) # print("Epoch {:3d} step {:3d} loss: {:5.2f}\n".format(epoch, step, loss)) total_loss.append(float(loss)) seqs, likelihood, _ = Prior.sample(128) valid = 0 # smiles=[] # vali_smi=[] for i, seq in enumerate(seqs.cpu().numpy()): smile = voc.decode(seq) # smiles.append(smile) if Chem.MolFromSmiles(smile): valid += 1 # vali_smi.append(smile) if i < smile_num: print(smile) vali_pro = valid / len(seqs) total_valid.append(float(vali_pro)) tqdm.write("\n{:>4.1f}% valid SMILES".format(100 * valid / len(seqs))) tqdm.write("*" * 50 + "\n") if vali_pro > max_valid_pro: max_valid_pro = vali_pro torch.save(Prior.rnn.state_dict(), max_save_path) # Save the Prior torch.save(Prior.rnn.state_dict(), last_save_path) print("total loss:", total_loss) print("total valid:", total_valid) return total_loss, total_valid