def run_once(args): ''' given the train/test files, run for once to see the results ''' config = init_exp_configs(args.config) update_configs(config, args) set_logfile(config, args) data_loader = DataLoader(config) run_glasso(config, data_loader)
def run_vary_mg(config): ''' run meta-graph one by one if 'yelp' in filename: ind2mg = {1: 'M1', 2: 'M9', 3: 'M9', 4: 'M4', 5: 'M7', 6: 'M6', 7: 'M5', 8: 'M3', 9: 'M3', 10: 'M2', 11: 'M8', 12: 'M8'} elif 'amazon' in filename: ind2mg = {1: 'M1', 2: 'M6', 3: 'M6', 4: 'M3', 5: 'M4', 6: 'M2', 7: 'M2', 8: 'M5', 9: 'M5'} ''' if 'yelp' in config['dt']: mg_inds = [[0], [9], [7, 8], [3], [6], [5], [4], [10, 11], [1, 2]] elif 'amazon' in config['dt']: mg_inds = [[0], [5, 6], [3], [4], [7, 8], [1, 2]] meta_graphs = config['meta_graphs'] for inds in mg_inds: config['meta_graphs'] = [meta_graphs[i] for i in inds] logging.info('run single meta_graph %s', config['meta_graphs']) data_loader = DataLoader(config) run_glasso(config, data_loader) logging.info('finish single meta_graph %s', config['meta_graphs'])
def run(): ''' given the train/test files, run for once to see the results ''' args = get_args() config = init_exp_configs(args.config) update_configs(config, args) set_logfile(config, args) data_loader = DataLoader(config) if config['exp_type'] in ['vary_reg', 'mp_vary_reg']: run_vary_reg(config, data_loader) if config['exp_type'] in ['vary_K', 'mp_vary_K']: print 'run %s, check log in %s' % (config['exp_type'], config['log_filename']) run_vary_K(config, data_loader) if config['exp_type'] in ['vary_mg']: print 'run %s, check log in %s' % (config['exp_type'], config['log_filename']) run_vary_mg(config)
from data_util import DataLoader from model import OCRnet datadir="./Dataset2" classes=["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z"] print("----- data loading -----") loader=DataLoader(datadir,classes) print("----- Model creating -----") ocrnet=OCRnet(loader.GetNumClasses(),classes) ocrnet.load_model("./ocrnetmodel2.model") print("----- Model -----") print(ocrnet.model) x,y=loader.GetTrainingData() val_x,val_y=loader.GetTestingData() print("----- testing started -----") print(ocrnet.test_model(x,y))