Esempio n. 1
0
    def _save_results(self, connection, map_pixel_results, list_insert_filters,
                      list_pixel_parameters, map_pixel_histograms):
        """
        Add the pixel to the database
        """
        if self._pxresult_id is not None and not self.noinsert:
            # Update the filters
            connection.execute(PIXEL_RESULT.update().where(
                PIXEL_RESULT.c.pxresult_id == self._pxresult_id).values(
                    map_pixel_results))

            connection.execute(PIXEL_FILTER.insert(), list_insert_filters)

            # Because I need to get the PK back we have to do each one separately
            for pixel_parameter in list_pixel_parameters:
                result = connection.execute(PIXEL_PARAMETER.insert(),
                                            pixel_parameter)
                id = result.inserted_primary_key

                # Add the ID to the list
                list_pixel_histograms = map_pixel_histograms[
                    pixel_parameter['parameter_name_id']]
                for map_values in list_pixel_histograms:
                    map_values['pxparameter_id'] = id[0]

                connection.execute(PIXEL_HISTOGRAM.insert(),
                                   list_pixel_histograms)
Esempio n. 2
0
    def _save_results(self, connection, map_pixel_results, list_insert_filters, list_pixel_parameters, map_pixel_histograms):
        """
        Add the pixel to the database
        """
        if self._pxresult_id is not None and not self.noinsert:
            # Update the filters
            connection.execute(PIXEL_RESULT.update().where(PIXEL_RESULT.c.pxresult_id == self._pxresult_id).values(map_pixel_results))

            connection.execute(PIXEL_FILTER.insert(), list_insert_filters)

            # Because I need to get the PK back we have to do each one separately
            for pixel_parameter in list_pixel_parameters:
                result = connection.execute(PIXEL_PARAMETER.insert(), pixel_parameter)
                id = result.inserted_primary_key

                # Add the ID to the list
                list_pixel_histograms = map_pixel_histograms[pixel_parameter['parameter_name_id']]
                for map_values in list_pixel_histograms:
                    map_values['pxparameter_id'] = id[0]

                connection.execute(PIXEL_HISTOGRAM.insert(), list_pixel_histograms)
    LOG.info('Range from %s to %s', list[0], list[1])
    galaxy_ids = range(int(list[0]), int(list[1]) + 1)
else:
    galaxy_ids = args['galaxy_id']

for galaxy_id_str in galaxy_ids:
    galaxy_id1 = int(galaxy_id_str)
    galaxy = connection.execute(select([GALAXY]).where(GALAXY.c.galaxy_id == galaxy_id1)).first()
    if galaxy is None:
        LOG.info('Error: Galaxy with galaxy_id of %d was not found', galaxy_id1)
    else:
        # Have we got work units out there for this galaxy?
        LOG.info('Working on galaxy %s (%d)', galaxy[GALAXY.c.name], galaxy[GALAXY.c.version_number])

        deleted_galaxy = 0
        transaction = connection.begin()
        count = 0
        for pxresult_id in connection.execute(select([PIXEL_RESULT.c.pxresult_id]).where(PIXEL_RESULT.c.galaxy_id == galaxy[GALAXY.c.galaxy_id]).order_by(PIXEL_RESULT.c.pxresult_id)):
            if not (count % 1000):
                LOG.info('Deleting low pixel_histogram values from galaxy {0} pixel {1} : Deleted total {2} galaxy {3}'.format(galaxy[GALAXY.c.galaxy_id], pxresult_id[0], deleted_total, deleted_galaxy))
            result_proxy = connection.execute(PIXEL_HISTOGRAM.delete().where(and_(PIXEL_HISTOGRAM.c.pxresult_id == pxresult_id[0], PIXEL_HISTOGRAM.c.hist_value < MIN_HIST_VALUE)))
            deleted_total += result_proxy.rowcount
            deleted_galaxy += result_proxy.rowcount
            count += 1

        transaction.commit()
        LOG.info('Removed %d really small histogram values from %s (%d)', deleted_galaxy, galaxy.name, galaxy.version_number)

connection.close()
LOG.info('Done - removed %d really small histogram values.', deleted_total)
Esempio n. 4
0
def store_pixels(connection, galaxy_id, group, dimension_x, dimension_y, dimension_z, pixel_count):
    """
    Store the pixel data
    """
    LOG.info('Storing the pixel data - {0} pixels to process'.format(pixel_count))
    count = connection.execute(select([func.count(PIXEL_HISTOGRAM.c.pxhistogram_id)], from_obj=PIXEL_HISTOGRAM.join(PIXEL_RESULT)).where(PIXEL_RESULT.c.galaxy_id == galaxy_id)).first()[0]

    data = numpy.empty((dimension_x, dimension_y, NUMBER_PARAMETERS, NUMBER_IMAGES), dtype=numpy.float)
    data.fill(numpy.NaN)
    data_pixel_details = group.create_dataset('pixel_details', (dimension_x, dimension_y), dtype=data_type_pixel, compression='gzip')
    data_pixel_parameters = group.create_dataset('pixel_parameters', (dimension_x, dimension_y, NUMBER_PARAMETERS), dtype=data_type_pixel_parameter, compression='gzip')
    data_pixel_filter = group.create_dataset('pixel_filters', (dimension_x, dimension_y, dimension_z), dtype=data_type_pixel_filter, compression='gzip')
    data_pixel_histograms_grid = group.create_dataset('pixel_histograms_grid', (dimension_x, dimension_y, NUMBER_PARAMETERS), dtype=h5py.special_dtype(ref=h5py.RegionReference), compression='gzip')
    data_pixel_histograms_list = group.create_dataset('pixel_histograms_list', (count,), dtype=data_type_pixel_histogram, compression='gzip')

    count = 0
    pixel_histogram_count = 0
    for pixel_result in connection.execute(select([PIXEL_RESULT]).where(PIXEL_RESULT.c.galaxy_id == galaxy_id)):
        count += 1

        if count % 500 == 0:
            LOG.info('Processed {0} of {1}'.format(count, pixel_count))

        pxresult_id = pixel_result[PIXEL_RESULT.c.pxresult_id]
        x = pixel_result[PIXEL_RESULT.c.x]
        y = pixel_result[PIXEL_RESULT.c.y]
        data[x, y, INDEX_F_MU_SFH    , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.fmu_sfh]
        data[x, y, INDEX_F_MU_IR     , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.fmu_ir]
        data[x, y, INDEX_MU_PARAMETER, INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.mu]
        data[x, y, INDEX_TAU_V       , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.tauv]
        data[x, y, INDEX_SSFR_0_1GYR , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.s_sfr]
        data[x, y, INDEX_M_STARS     , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.m]
        data[x, y, INDEX_L_DUST      , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.ldust]
        data[x, y, INDEX_T_C_ISM     , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.t_c_ism]
        data[x, y, INDEX_T_W_BC      , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.t_w_bc]
        data[x, y, INDEX_XI_C_TOT    , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.xi_c_tot]
        data[x, y, INDEX_XI_PAH_TOT  , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.xi_pah_tot]
        data[x, y, INDEX_XI_MIR_TOT  , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.xi_mir_tot]
        data[x, y, INDEX_XI_W_TOT    , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.x_w_tot]
        data[x, y, INDEX_TAU_V_ISM   , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.tvism]
        data[x, y, INDEX_M_DUST      , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.mdust]
        data[x, y, INDEX_SFR_0_1GYR  , INDEX_BEST_FIT] = pixel_result[PIXEL_RESULT.c.sfr]

        data_pixel_details[x, y] = (
            pxresult_id,
            pixel_result[PIXEL_RESULT.c.area_id],
            pixel_result[PIXEL_RESULT.c.i_sfh],
            pixel_result[PIXEL_RESULT.c.i_ir],
            pixel_result[PIXEL_RESULT.c.chi2],
            pixel_result[PIXEL_RESULT.c.redshift],
            pixel_result[PIXEL_RESULT.c.i_opt],
            pixel_result[PIXEL_RESULT.c.dmstar],
            pixel_result[PIXEL_RESULT.c.dfmu_aux],
            pixel_result[PIXEL_RESULT.c.dz],
        )

        for pixel_parameter in connection.execute(select([PIXEL_PARAMETER]).where(PIXEL_PARAMETER.c.pxresult_id == pxresult_id).order_by(PIXEL_PARAMETER.c.pxparameter_id)):
            if pixel_parameter[PIXEL_PARAMETER.c.parameter_name_id] is not None:
                z = pixel_parameter[PIXEL_PARAMETER.c.parameter_name_id] - 1
                data[x, y, z, INDEX_PERCENTILE_50]    = pixel_parameter[PIXEL_PARAMETER.c.percentile50]
                data[x, y, z, INDEX_HIGHEST_PROB_BIN] = pixel_parameter[PIXEL_PARAMETER.c.high_prob_bin] if pixel_parameter[PIXEL_PARAMETER.c.high_prob_bin] is not None else numpy.NaN
                data[x, y, z, INDEX_PERCENTILE_2_5]   = pixel_parameter[PIXEL_PARAMETER.c.percentile2_5]
                data[x, y, z, INDEX_PERCENTILE_16]    = pixel_parameter[PIXEL_PARAMETER.c.percentile16]
                data[x, y, z, INDEX_PERCENTILE_84]    = pixel_parameter[PIXEL_PARAMETER.c.percentile84]
                data[x, y, z, INDEX_PERCENTILE_97_5]  = pixel_parameter[PIXEL_PARAMETER.c.percentile97_5]

                first_prob_bin = pixel_parameter[PIXEL_PARAMETER.c.first_prob_bin] if pixel_parameter[PIXEL_PARAMETER.c.first_prob_bin] is not None else numpy.NaN
                last_prob_bin = pixel_parameter[PIXEL_PARAMETER.c.last_prob_bin] if pixel_parameter[PIXEL_PARAMETER.c.last_prob_bin] is not None else numpy.NaN
                bin_step = pixel_parameter[PIXEL_PARAMETER.c.bin_step] if pixel_parameter[PIXEL_PARAMETER.c.bin_step] is not None else numpy.NaN
                data_pixel_parameters[x, y, z] = (
                    first_prob_bin,
                    last_prob_bin,
                    bin_step,
                )

                pixel_histogram_start = pixel_histogram_count
                for pixel_histogram in connection.execute(select([PIXEL_HISTOGRAM]).where(PIXEL_HISTOGRAM.c.pxparameter_id == pixel_parameter[PIXEL_PARAMETER.c.pxparameter_id]).order_by(PIXEL_HISTOGRAM.c.pxhistogram_id)):
                    data_pixel_histograms_list[pixel_histogram_count] = (
                        pixel_histogram[PIXEL_HISTOGRAM.c.x_axis],
                        pixel_histogram[PIXEL_HISTOGRAM.c.hist_value],
                    )
                    pixel_histogram_count += 1
                # only store it if we have it
                if pixel_histogram_count - pixel_histogram_start > 0:
                    data_pixel_histograms_grid[x, y, z] = data_pixel_histograms_list.regionref[pixel_histogram_start:pixel_histogram_count]

        filter_layer = 0
        for pixel_filter in connection.execute(select([PIXEL_FILTER]).where(PIXEL_FILTER.c.pxresult_id == pxresult_id).order_by(PIXEL_FILTER.c.pxfilter_id)):
            # Sometimes we seem to get two versions of the data - just use the first set
            if filter_layer < dimension_z:
                data_pixel_filter[x, y, filter_layer] = (
                    pixel_filter[PIXEL_FILTER.c.observed_flux],
                    pixel_filter[PIXEL_FILTER.c.observational_uncertainty],
                    pixel_filter[PIXEL_FILTER.c.flux_bfm],
                )
                filter_layer += 1

    pixel_dataset = group.create_dataset('pixels', data=data, compression='gzip')
    pixel_dataset.attrs['DIM3_F_MU_SFH']     = INDEX_F_MU_SFH
    pixel_dataset.attrs['DIM3_F_MU_IR']      = INDEX_F_MU_IR
    pixel_dataset.attrs['DIM3_MU_PARAMETER'] = INDEX_MU_PARAMETER
    pixel_dataset.attrs['DIM3_TAU_V']        = INDEX_TAU_V
    pixel_dataset.attrs['DIM3_SSFR_0_1GYR']  = INDEX_SSFR_0_1GYR
    pixel_dataset.attrs['DIM3_M_STARS']      = INDEX_M_STARS
    pixel_dataset.attrs['DIM3_L_DUST']       = INDEX_L_DUST
    pixel_dataset.attrs['DIM3_T_C_ISM']      = INDEX_T_C_ISM
    pixel_dataset.attrs['DIM3_T_W_BC']       = INDEX_T_W_BC
    pixel_dataset.attrs['DIM3_XI_C_TOT']     = INDEX_XI_C_TOT
    pixel_dataset.attrs['DIM3_XI_PAH_TOT']   = INDEX_XI_PAH_TOT
    pixel_dataset.attrs['DIM3_XI_MIR_TOT']   = INDEX_XI_MIR_TOT
    pixel_dataset.attrs['DIM3_XI_W_TOT']     = INDEX_XI_W_TOT
    pixel_dataset.attrs['DIM3_TAU_V_ISM']    = INDEX_TAU_V_ISM
    pixel_dataset.attrs['DIM3_M_DUST']       = INDEX_M_DUST
    pixel_dataset.attrs['DIM3_SFR_0_1GYR']   = INDEX_SFR_0_1GYR

    pixel_dataset.attrs['DIM4_BEST_FIT']         = INDEX_BEST_FIT
    pixel_dataset.attrs['DIM4_PERCENTILE_50']    = INDEX_PERCENTILE_50
    pixel_dataset.attrs['DIM4_HIGHEST_PROB_BIN'] = INDEX_HIGHEST_PROB_BIN
    pixel_dataset.attrs['DIM4_PERCENTILE_2_5']   = INDEX_PERCENTILE_2_5
    pixel_dataset.attrs['DIM4_PERCENTILE_16']    = INDEX_PERCENTILE_16
    pixel_dataset.attrs['DIM4_PERCENTILE_84']    = INDEX_PERCENTILE_84
    pixel_dataset.attrs['DIM4_PERCENTILE_97_5']  = INDEX_PERCENTILE_97_5

    pxresult_id = connection.execute(select([PIXEL_RESULT.c.pxresult_id]).where(PIXEL_RESULT.c.galaxy_id == galaxy_id)).first()[0]
    filter_layer = 0
    for pixel_filter in connection.execute(select([PIXEL_FILTER]).where(PIXEL_FILTER.c.pxresult_id == pxresult_id).order_by(PIXEL_FILTER.c.pxfilter_id)):
        data_pixel_filter.attrs[pixel_filter[PIXEL_FILTER.c.filter_name]] = filter_layer
        filter_layer += 1

    return count
Esempio n. 5
0
                        select([
                            AREA.c.area_id
                        ]).where(AREA.c.galaxy_id == galaxy_id_aws).order_by(
                            AREA.c.area_id)):
                    deleted_area_count += 1
                    for pxresult_id1 in connection_aws.execute(
                            select([PIXEL_RESULT.c.pxresult_id
                                    ]).where(PIXEL_RESULT.c.area_id ==
                                             area_id1[0]).order_by(
                                                 PIXEL_RESULT.c.pxresult_id)):
                        deleted_pixel_count += 1
                        connection_aws.execute(PIXEL_FILTER.delete().where(
                            PIXEL_FILTER.c.pxresult_id == pxresult_id1[0]))
                        connection_aws.execute(PIXEL_PARAMETER.delete().where(
                            PIXEL_PARAMETER.c.pxresult_id == pxresult_id1[0]))
                        connection_aws.execute(PIXEL_HISTOGRAM.delete().where(
                            PIXEL_HISTOGRAM.c.pxresult_id == pxresult_id1[0]))

                    connection_aws.execute(PIXEL_RESULT.delete().where(
                        PIXEL_RESULT.c.area_id == area_id1[0]))

                    transaction_aws.commit()
                    transaction_aws = connection_aws.begin()

                    # Give the rest of the world a chance to access the database
                    time.sleep(1)

            transaction_aws.commit()
            end_time = time.time()
            LOG.info('Galaxy with galaxy_id of %d was archived.', galaxy_id1)
            LOG.info('Copied %d areas %d pixels.', area_count, pixel_count)
            LOG.info('Deleted %d areas %d pixels.', deleted_area_count,
Esempio n. 6
0
                insert_only(IMAGE_FILTERS_USED, image_filters_used, connection_pleiades)

            transaction_pleiades.commit()
            copy_end_time = time.time()

            # Now we can delete the bits we don't need
            deleted_area_count = 0
            deleted_pixel_count = 0
            if False:
                for area_id1 in connection_aws.execute(select([AREA.c.area_id]).where(AREA.c.galaxy_id == galaxy_id_aws).order_by(AREA.c.area_id)):
                    deleted_area_count += 1
                    for pxresult_id1 in connection_aws.execute(select([PIXEL_RESULT.c.pxresult_id]).where(PIXEL_RESULT.c.area_id == area_id1[0]).order_by(PIXEL_RESULT.c.pxresult_id)):
                        deleted_pixel_count += 1
                        connection_aws.execute(PIXEL_FILTER.delete().where(PIXEL_FILTER.c.pxresult_id == pxresult_id1[0]))
                        connection_aws.execute(PIXEL_PARAMETER.delete().where(PIXEL_PARAMETER.c.pxresult_id == pxresult_id1[0]))
                        connection_aws.execute(PIXEL_HISTOGRAM.delete().where(PIXEL_HISTOGRAM.c.pxresult_id == pxresult_id1[0]))

                    connection_aws.execute(PIXEL_RESULT.delete().where(PIXEL_RESULT.c.area_id == area_id1[0]))

                    transaction_aws.commit()
                    transaction_aws = connection_aws.begin()

                    # Give the rest of the world a chance to access the database
                    time.sleep(1)

            transaction_aws.commit()
            end_time = time.time()
            LOG.info('Galaxy with galaxy_id of %d was archived.', galaxy_id1)
            LOG.info('Copied %d areas %d pixels.', area_count, pixel_count)
            LOG.info('Deleted %d areas %d pixels.', deleted_area_count, deleted_pixel_count)
            total_time = end_time - start_time
Esempio n. 7
0
                ):
                    deleted_area_count += 1
                    for pxresult_id1 in connection_aws.execute(
                        select([PIXEL_RESULT.c.pxresult_id])
                        .where(PIXEL_RESULT.c.area_id == area_id1[0])
                        .order_by(PIXEL_RESULT.c.pxresult_id)
                    ):
                        deleted_pixel_count += 1
                        connection_aws.execute(
                            PIXEL_FILTER.delete().where(PIXEL_FILTER.c.pxresult_id == pxresult_id1[0])
                        )
                        connection_aws.execute(
                            PIXEL_PARAMETER.delete().where(PIXEL_PARAMETER.c.pxresult_id == pxresult_id1[0])
                        )
                        connection_aws.execute(
                            PIXEL_HISTOGRAM.delete().where(PIXEL_HISTOGRAM.c.pxresult_id == pxresult_id1[0])
                        )

                    connection_aws.execute(PIXEL_RESULT.delete().where(PIXEL_RESULT.c.area_id == area_id1[0]))

                    transaction_aws.commit()
                    transaction_aws = connection_aws.begin()

                    # Give the rest of the world a chance to access the database
                    time.sleep(1)

            transaction_aws.commit()
            end_time = time.time()
            LOG.info("Galaxy with galaxy_id of %d was archived.", galaxy_id1)
            LOG.info("Copied %d areas %d pixels.", area_count, pixel_count)
            LOG.info("Deleted %d areas %d pixels.", deleted_area_count, deleted_pixel_count)
Esempio n. 8
0
        # Have we got work units out there for this galaxy?
        LOG.info('Working on galaxy %s (%d)', galaxy[GALAXY.c.name],
                 galaxy[GALAXY.c.version_number])

        deleted_galaxy = 0
        transaction = connection.begin()
        count = 0
        for pxresult_id in connection.execute(
                select([
                    PIXEL_RESULT.c.pxresult_id
                ]).where(PIXEL_RESULT.c.galaxy_id == galaxy[
                    GALAXY.c.galaxy_id]).order_by(PIXEL_RESULT.c.pxresult_id)):
            if not (count % 1000):
                LOG.info(
                    'Deleting low pixel_histogram values from galaxy {0} pixel {1} : Deleted total {2} galaxy {3}'
                    .format(galaxy[GALAXY.c.galaxy_id], pxresult_id[0],
                            deleted_total, deleted_galaxy))
            result_proxy = connection.execute(PIXEL_HISTOGRAM.delete().where(
                and_(PIXEL_HISTOGRAM.c.pxresult_id == pxresult_id[0],
                     PIXEL_HISTOGRAM.c.hist_value < MIN_HIST_VALUE)))
            deleted_total += result_proxy.rowcount
            deleted_galaxy += result_proxy.rowcount
            count += 1

        transaction.commit()
        LOG.info('Removed %d really small histogram values from %s (%d)',
                 deleted_galaxy, galaxy.name, galaxy.version_number)

connection.close()
LOG.info('Done - removed %d really small histogram values.', deleted_total)