Esempio n. 1
0
    def update_figure(self, rnd_draws):
        # regenerate matplotlib plot
        self.ax1.cla()
        self.ax1.set_xlabel('r1')
        self.ax1.set_ylabel('Normalized Distribtuion')
        self.ax1.set_xlim(0, 1)
        self.ax1.set_ylim(0, 1.5)
        self.ax1.grid(True)
        self.ax1.hist([r[0] for r in rnd_draws],
                      50,
                      normed=1,
                      facecolor='green',
                      alpha=0.75)
        self.ax2.cla()
        self.ax2.set_xlabel('r2')
        self.ax2.set_ylabel('Normalized Distribtuion')
        self.ax2.set_xlim(0, 1)
        self.ax2.set_ylim(0, 1.5)
        self.ax2.grid(True)
        self.ax2.hist([r[1] for r in rnd_draws],
                      50,
                      normed=1,
                      facecolor='blue',
                      alpha=0.75)

        # send new matplotlib plots to frontend
        self.emit('mpld3canvas', mpld3.fig_to_dict(self.fig))


META = databench.Meta('mpld3pi', __name__, __doc__, Analysis)
Esempio n. 2
0
                      for f in self.flowers]
            widths = [r-l for l, r in zip(lefts, rights)]
            self.flowers = [f for f, w in zip(self.flowers, widths)
                            if w < self.max_width]

            for f in self.flowers:
                f['trunk'].generate()

            self.emit('update', self.output())
            time.sleep(0.15)

    """Adjust parameters."""

    def on_number_of_flowers(self, flowers):
        self.number_of_flowers = flowers

    def on_branch_angle(self, angle_in_degrees):
        self.config.branch_angle = angle_in_degrees/57.0

    def on_init_size(self, size):
        self.config.init_size = size

    def on_init_length(self, length):
        self.config.init_length = length

    def on_init_color(self, color):
        self.config.init_color = color


META = databench.Meta('flowers', __name__, __doc__, Analysis)
Esempio n. 3
0
            for j in finished_jobs:
                draws_count += j.result[2]
                inside_count += j.result[1]
                self.emit(
                    'log', {
                        'result': j.result,
                        'draws': draws_count,
                        'inside': inside_count,
                    })

                uncertainty = 4.0 * math.sqrt(
                    draws_count * inside_count / draws_count *
                    (1.0 - inside_count / draws_count)) / draws_count
                self.emit(
                    'status', {
                        'pi-estimate': 4.0 * inside_count / draws_count,
                        'pi-uncertainty': uncertainty,
                    })

                jobs.remove(j)
            time.sleep(0.1)

        self.emit('log', {'action': 'done'})

    def on_disconnect(self):
        # terminate all workers
        self.on_workers(0)


META = databench.Meta('fastpi', __name__, __doc__, Analysis)
Esempio n. 4
0
import databench

import time
import datetime


class Analysis(databench.Analysis):
    def on_connect(self):
        """Run as soon as a browser connects to this.

        CHANGEME
        """
        self.emit('log', 'backend is connected and initialized')
        time.sleep(3)
        self.emit('ready', 'ready at ' + datetime.datetime.now().isoformat())

    def on_got_ready_signal(self, msg):
        """This is the signal the frontend sends back to the backend once
        it received the 'ready' signal from the on_connect() function.

        CHANGEME
        """

        time.sleep(3)
        self.emit(
            'log', 'Backend received the confirmation from the frontend '
            'that the ready signal was received.')


META = databench.Meta('scaffold', __name__, __doc__, Analysis)
Esempio n. 5
0
    """Checks enironment for certatin redis providers and creates
    a redis client."""

    rediscloudenv = os.environ.get('REDISCLOUD_URL')
    if rediscloudenv:
        url = urlparse.urlparse(rediscloudenv)
        r = redis.Redis(host=url.hostname,
                        port=url.port,
                        password=url.password)
    else:
        r = redis.StrictRedis()

    return r


class Analysis(databench.Analysis):
    def __init__(self):
        self.redis_client = redis_creator()

    def on_connect(self):
        """Run as soon as a browser connects to this."""
        self.emit('log', {'action': 'backend started'})

    def on_stats(self, msg):
        """Listens for new messages from frontend and pushes to
        redis channel."""
        self.redis_client.publish('someStatsProvider', msg)


META = databench.Meta('redispub', __name__, __doc__, Analysis)
Esempio n. 6
0
import matplotlib.pyplot as plt

import databench


class Analysis(databench.Analysis):
    def on_connect(self):
        """Run as soon as a browser connects to this."""

        fig, ax = plt.subplots()
        points = ax.scatter(
            np.random.rand(40),
            np.random.rand(40),
            s=300,
            alpha=0.3,
        )

        # use the mpld3 tooltop plugin
        labels = ["Point {0}".format(i) for i in range(40)]
        tooltip = mpld3.plugins.PointLabelTooltip(points, labels)
        mpld3.plugins.connect(fig, tooltip)

        # send the plot to the frontend
        self.emit('mpld3canvas', mpld3.fig_to_dict(fig))

        # done
        self.emit('log', {'action': 'done'})


META = databench.Meta('mpld3PointLabel', __name__, __doc__, Analysis)
Esempio n. 7
0
"""Providing "bag-of-chars" statistics."""

import databench


class Analysis(databench.Analysis):
    def on_connect(self):
        """Run as soon as a browser connects to this."""
        self.emit(
            'log',
            {'backend': 'started and listening for signals from frontend'})

    def on_sentence(self, sentence):
        """Takes a sentence and counts the characters."""
        counts = {}
        for c in sentence.lower():
            if ord(c) < ord('a') or \
               ord(c) > ord('z'):
                continue
            if c not in counts:
                counts[c] = sentence.count(c)

        self.emit('log', counts)
        self.emit('counts', counts)


META = databench.Meta('bagofcharsd3', __name__, __doc__, Analysis)
Esempio n. 8
0
        for i in xrange(10000):
            time.sleep(0.001)

            # generate points and check whether they are inside the unit circle
            r1 = random.random()
            r2 = random.random()
            if r1*r1 + r2*r2 < 1.0:
                inside += 1

            # every 100 iterations, update status
            if (i+1) % 100 == 0:
                draws = i+1

                # debug
                self.emit('log', {'draws': draws, 'inside': inside})

                # calculate pi and its uncertainty given the current draws
                p = float(inside)/draws
                uncertainty = 4.0*math.sqrt(draws*p*(1.0 - p)) / draws

                # send status to frontend
                self.emit('status', {
                    'pi-estimate': 4.0*inside/draws,
                    'pi-uncertainty': uncertainty
                })

        self.emit('log', {'action': 'done'})


META = databench.Meta('angular', __name__, __doc__, Analysis)
Esempio n. 9
0
                    'draws': draws,
                    'inside': inside,
                    'r1': r1,
                    'r2': r2,
                })

                p = float(inside) / draws
                uncertainty = 4.0 * math.sqrt(draws * p * (1.0 - p)) / draws
                self.emit(
                    'status', {
                        'pi-estimate': 4.0 * inside / draws,
                        'pi-uncertainty': uncertainty
                    })

        self.emit('log', {'action': 'done'})

    def on_samples(self, value):
        """Sets the number of samples to generate per run."""
        self.samples = value

    def on_test_fn(self, first_param, second_param=100):
        """Echo params."""
        print(first_param, second_param)
        self.emit('test_fn', {
            'first_param': first_param,
            'second_param': second_param,
        })


META = databench.Meta('dummypi', __name__, __doc__, Analysis)
Esempio n. 10
0
"""Hello World for Databench."""

import databench


class Analysis(databench.Analysis):
    def on_connect(self):
        """Run as soon as a browser connects to this."""
        self.emit('status', {'message': 'Hello World'})


META = databench.Meta('helloworld', __name__, __doc__, Analysis)