def experiment(self, name_text_file): inputs = DataClass() #name_text_file = input() inputs.Read(str(name_text_file)) # Initialize graph g = Graph() # Initialize nodes on the graph g.set_node_names(inputs.names) # This can be used to reduce computation to reduce the number of connected nodes that are defined, however it is preferred not to, # because the weight in the graph might be chosen to be defined differently # visited=[] for i in range(0, inputs.n + 2): for j in range(0, inputs.n + 2): # visited.append(i) if j != i: calculate_risk = np.linalg.norm( inputs.input_information[str(i)] - inputs.input_information[str(j)]) # insert edge betweem two nodes along with the corresponding weight g.insert_edge(calculate_risk, int(i), int(j)) else: continue return g.dijkstar_output(0)
import numpy as np from Find_Max_Path import Graph from dataclass import DataClass #Read data inputs = DataClass() inputs.Read('data') #Initialize graph g = Graph() #Initialize nodes on the graph g.set_node_names(inputs.names) #This can be used to reduce computation to reduce the number of connected nodes that are defined, however it is preferred not to, #because the weight in the graph might be chosen to be defined differently #visited=[] for i in range(0, inputs.n + 2): for j in range(0, inputs.n + 2): #visited.append(i) if j != i: calculate_risk = np.linalg.norm(inputs.input_information[str(i)] - inputs.input_information[str(j)]) #insert edge betweem two nodes along with the corresponding weight g.insert_edge(calculate_risk, int(i), int(j)) else: continue import pprint pp = pprint.PrettyPrinter(indent=2)