Esempio n. 1
0
def get_band_name_intersection(dataset_type, satellites):

    bands = [b.name for b in get_bands(dataset_type, satellites[0])]

    for satellite in satellites[1:]:
        for band in bands:
            if band not in [b.name for b in get_bands(dataset_type, satellite)]:
                bands.remove(band)

    return bands
Esempio n. 2
0
def get_band_name_union(dataset_type, satellites):

    bands = [b.name for b in get_bands(dataset_type, satellites[0])]

    for satellite in satellites[1:]:
        for b in get_bands(dataset_type, satellite):
            if b.name not in bands:
                bands.append(b.name)

    return bands
    def process_arguments(self, args):

        # Call method on super class
        # super(self.__class__, self).process_arguments(args)
        workflow.Workflow.process_arguments(self, args)

        self.dataset_type = args.dataset_type
        self.bands = args.bands

        # Verify that all the requested satellites have the requested bands

        for satellite in self.satellites:
            if not all(item in [b.name for b in get_bands(self.dataset_type, satellite)] for item in self.bands):
                _log.error("Requested bands [%s] not ALL present for satellite [%s]", self.bands, satellite)
                raise Exception("Not all bands present for all satellites")

        self.chunk_size_x = args.chunk_size_x
        self.chunk_size_y = args.chunk_size_y
    def process_arguments(self, args):

        # Call method on super class
        # super(self.__class__, self).process_arguments(args)
        workflow.Workflow.process_arguments(self, args)

        self.dataset_type = args.dataset_type
        self.bands = args.bands

        # Verify that all the requested satellites have the requested bands

        for satellite in self.satellites:
            if not all(
                    item in
                [b.name for b in get_bands(self.dataset_type, satellite)]
                    for item in self.bands):
                _log.error(
                    "Requested bands [%s] not ALL present for satellite [%s]",
                    self.bands, satellite)
                raise Exception("Not all bands present for all satellites")

        self.chunk_size_x = args.chunk_size_x
        self.chunk_size_y = args.chunk_size_y
    def run(self):
        self.parse_arguments()

        config = Config()
        _log.debug(config.to_str())

        path = self.get_output_filename(self.dataset_type)
        _log.info("Output file is [%s]", path)

        if os.path.exists(path):
            if self.overwrite:
                _log.info("Removing existing output file [%s]", path)
                os.remove(path)
            else:
                _log.error("Output file [%s] exists", path)
                raise Exception("Output file [%s] already exists" % path)

        # TODO
        bands = get_bands(self.dataset_type, self.satellites[0])

        # TODO once WOFS is in the cube

        tiles = list_tiles_as_list(x=[self.x], y=[self.y], acq_min=self.acq_min, acq_max=self.acq_max,
                                   satellites=[satellite for satellite in self.satellites],
                                   dataset_types=[self.dataset_type],
                                   database=config.get_db_database(),
                                   user=config.get_db_username(),
                                   password=config.get_db_password(),
                                   host=config.get_db_host(), port=config.get_db_port())

        raster = None
        metadata = None

        # TODO - PQ is UNIT16 (others are INT16) and so -999 NDV doesn't work
        ndv = self.dataset_type == DatasetType.PQ25 and UINT16_MAX or NDV

        _log.debug("Current MAX RSS  usage is [%d] MB",  resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)

        import itertools
        for x, y in itertools.product(range(0, 4000, self.chunk_size_x), range(0, 4000, self.chunk_size_y)):

            _log.info("About to read data chunk ({xmin:4d},{ymin:4d}) to ({xmax:4d},{ymax:4d})".format(xmin=x, ymin=y, xmax=x+self.chunk_size_x-1, ymax=y+self.chunk_size_y-1))
            _log.debug("Current MAX RSS  usage is [%d] MB",  resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)

            stack = dict()

            for tile in tiles:

                if self.list_only:
                    _log.info("Would summarise dataset [%s]", tile.datasets[self.dataset_type].path)
                    continue

                pqa = None

                _log.debug("Reading dataset [%s]", tile.datasets[self.dataset_type].path)

                if not metadata:
                    metadata = get_dataset_metadata(tile.datasets[self.dataset_type])

                # Apply PQA if specified

                if self.apply_pqa_filter:
                    data = get_dataset_data_with_pq(tile.datasets[self.dataset_type], tile.datasets[DatasetType.PQ25], bands=bands, x=x, y=y, x_size=self.chunk_size_x, y_size=self.chunk_size_y, pq_masks=self.pqa_mask, ndv=ndv)

                else:
                    data = get_dataset_data(tile.datasets[self.dataset_type], bands=bands, x=x, y=y, x_size=self.chunk_size_x, y_size=self.chunk_size_y)

                for band in bands:
                    if band in stack:
                        stack[band].append(data[band])

                    else:
                        stack[band] = [data[band]]

                    _log.debug("data[%s] has shape [%s] and MB [%s]", band.name, numpy.shape(data[band]), data[band].nbytes/1000/1000)
                    _log.debug("stack[%s] has [%s] elements", band.name, len(stack[band]))

            # Apply summary method

            _log.info("Finished reading {count} datasets for chunk ({xmin:4d},{ymin:4d}) to ({xmax:4d},{ymax:4d}) - about to summarise them".format(count=len(tiles), xmin=x, ymin=y, xmax=x+self.chunk_size_x-1, ymax=y+self.chunk_size_y-1))
            _log.debug("Current MAX RSS  usage is [%d] MB",  resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)

            masked_stack = dict()

            for band in bands:
                masked_stack[band] = numpy.ma.masked_equal(stack[band], ndv)
                _log.debug("masked_stack[%s] is %s", band.name, masked_stack[band])
                _log.debug("masked stack[%s] has shape [%s] and MB [%s]", band.name, numpy.shape(masked_stack[band]), masked_stack[band].nbytes/1000/1000)
                _log.debug("Current MAX RSS  usage is [%d] MB",  resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)

                if self.summary_method == TimeSeriesSummaryMethod.MIN:
                    masked_summary = numpy.min(masked_stack[band], axis=0)

                elif self.summary_method == TimeSeriesSummaryMethod.MAX:
                    masked_summary = numpy.max(masked_stack[band], axis=0)

                elif self.summary_method == TimeSeriesSummaryMethod.MEAN:
                    masked_summary = numpy.mean(masked_stack[band], axis=0)

                elif self.summary_method == TimeSeriesSummaryMethod.MEDIAN:
                    masked_summary = numpy.median(masked_stack[band], axis=0)

                # aka 50th percentile

                elif self.summary_method == TimeSeriesSummaryMethod.MEDIAN_NON_INTERPOLATED:
                    masked_sorted = numpy.ma.sort(masked_stack[band], axis=0)
                    masked_percentile_index = numpy.ma.floor(numpy.ma.count(masked_sorted, axis=0) * 0.95).astype(numpy.int16)
                    masked_summary = numpy.ma.choose(masked_percentile_index, masked_sorted)

                elif self.summary_method == TimeSeriesSummaryMethod.COUNT:
                    # TODO Need to artificially create masked array here since it is being expected/filled below!!!
                    masked_summary = numpy.ma.masked_equal(masked_stack[band].count(axis=0), ndv)

                elif self.summary_method == TimeSeriesSummaryMethod.SUM:
                    masked_summary = numpy.sum(masked_stack[band], axis=0)

                elif self.summary_method == TimeSeriesSummaryMethod.STANDARD_DEVIATION:
                    masked_summary = numpy.std(masked_stack[band], axis=0)

                elif self.summary_method == TimeSeriesSummaryMethod.VARIANCE:
                    masked_summary = numpy.var(masked_stack[band], axis=0)

                # currently 95th percentile

                elif self.summary_method == TimeSeriesSummaryMethod.PERCENTILE:
                    masked_sorted = numpy.ma.sort(masked_stack[band], axis=0)
                    masked_percentile_index = numpy.ma.floor(numpy.ma.count(masked_sorted, axis=0) * 0.95).astype(numpy.int16)
                    masked_summary = numpy.ma.choose(masked_percentile_index, masked_sorted)

                elif self.summary_method == TimeSeriesSummaryMethod.YOUNGEST_PIXEL:

                    # TODO the fact that this is band at a time might be problematic.  We really should be considering
                    # all bands at once (that is what the landsat_mosaic logic did).  If PQA is being applied then
                    # it's probably all good but if not then we might get odd results....

                    masked_summary = empty_array(shape=(self.chunk_size_x, self.chunk_size_x), dtype=numpy.int16, ndv=ndv)

                    # Note the reversed as the stack is created oldest first
                    for d in reversed(stack[band]):
                        masked_summary = numpy.where(masked_summary == ndv, d, masked_summary)

                        # If the summary doesn't contain an no data values then we can stop
                        if not numpy.any(masked_summary == ndv):
                            break

                    # TODO Need to artificially create masked array here since it is being expected/filled below!!!
                    masked_summary = numpy.ma.masked_equal(masked_summary, ndv)

                elif self.summary_method == TimeSeriesSummaryMethod.OLDEST_PIXEL:

                    # TODO the fact that this is band at a time might be problematic.  We really should be considering
                    # all bands at once (that is what the landsat_mosaic logic did).  If PQA is being applied then
                    # it's probably all good but if not then we might get odd results....

                    masked_summary = empty_array(shape=(self.chunk_size_x, self.chunk_size_x), dtype=numpy.int16, ndv=ndv)

                    # Note the NOT reversed as the stack is created oldest first
                    for d in stack[band]:
                        masked_summary = numpy.where(masked_summary == ndv, d, masked_summary)

                        # If the summary doesn't contain an no data values then we can stop
                        if not numpy.any(masked_summary == ndv):
                            break

                    # TODO Need to artificially create masked array here since it is being expected/filled below!!!
                    masked_summary = numpy.ma.masked_equal(masked_summary, ndv)

                masked_stack[band] = None
                _log.debug("NONE-ing masked stack[%s]", band.name)
                _log.debug("Current MAX RSS  usage is [%d] MB",  resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)

                _log.debug("masked summary is [%s]", masked_summary)
                _log.debug("Current MAX RSS  usage is [%d] MB",  resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)

                # Create the output file

                if not os.path.exists(path):
                    _log.info("Creating raster [%s]", path)

                    driver = gdal.GetDriverByName("GTiff")
                    assert driver

                    raster = driver.Create(path, metadata.shape[0], metadata.shape[1], len(bands), gdal.GDT_Int16)
                    assert raster

                    raster.SetGeoTransform(metadata.transform)
                    raster.SetProjection(metadata.projection)

                    for b in bands:
                        raster.GetRasterBand(b.value).SetNoDataValue(ndv)

                _log.info("Writing band [%s] data to raster [%s]", band.name, path)
                _log.debug("Current MAX RSS  usage is [%d] MB",  resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)

                raster.GetRasterBand(band.value).WriteArray(masked_summary.filled(ndv), xoff=x, yoff=y)
                raster.GetRasterBand(band.value).ComputeStatistics(True)

                raster.FlushCache()

                masked_summary = None
                _log.debug("NONE-ing the masked summary")
                _log.debug("Current MAX RSS  usage is [%d] MB",  resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)

            stack = None
            _log.debug("Just NONE-ed the stack")
            _log.debug("Current MAX RSS  usage is [%d] MB",  resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)

        raster = None

        _log.debug("Just NONE'd the raster")
        _log.debug("Current MAX RSS  usage is [%d] MB",  resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)

        _log.info("Memory usage was [%d MB]", resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024)
        _log.info("CPU time used [%s]", timedelta(seconds=int(resource.getrusage(resource.RUSAGE_SELF).ru_utime)))
Esempio n. 6
0
def get_dataset_data(dataset, bands=None, x=0, y=0, x_size=None, y_size=None):

    # dataset_types_physical = [
    #     DatasetType.ARG25, DatasetType.PQ25, DatasetType.FC25,
    #     DatasetType.WATER,
    #     DatasetType.DSM, DatasetType.DEM, DatasetType.DEM_HYDROLOGICALLY_ENFORCED, DatasetType.DEM_SMOOTHED]
    #
    # dataset_types_virtual_nbar = [
    #     DatasetType.NDVI,
    #     DatasetType.EVI,
    #     DatasetType.NBR,
    #     DatasetType.TCI
    # ]

    # NDVI calculated using RED and NIR from ARG25

    if dataset.dataset_type == DatasetType.NDVI:

        bands = get_bands(DatasetType.ARG25, dataset.satellite)

        band_red = bands[Ls57Arg25Bands.RED.name]
        band_nir = bands[Ls57Arg25Bands.NEAR_INFRARED.name]

        data = read_dataset_data(dataset, bands=[band_red, band_nir], x=x, y=y, x_size=x_size, y_size=y_size)
        data = calculate_ndvi(data[band_red], data[band_nir])

        return {NdviBands.NDVI: data}

    # EVI calculated using RED, BLUE and NIR from ARG25

    elif dataset.dataset_type == DatasetType.EVI:

        bands = get_bands(DatasetType.ARG25, dataset.satellite)

        band_red = bands[Ls57Arg25Bands.RED.name]
        band_blue = bands[Ls57Arg25Bands.BLUE.name]
        band_nir = bands[Ls57Arg25Bands.NEAR_INFRARED.name]

        data = read_dataset_data(dataset, bands=[band_red, band_blue, band_nir], x=x, y=y, x_size=x_size, y_size=y_size)
        data = calculate_evi(data[band_red], data[band_blue], data[band_nir])

        return {EviBands.EVI: data}

    # NBR calculated using NIR and SWIR-2 from ARG25

    elif dataset.dataset_type == DatasetType.NBR:

        bands = get_bands(DatasetType.ARG25, dataset.satellite)

        band_nir = bands[Ls57Arg25Bands.NEAR_INFRARED.name]
        band_swir = bands[Ls57Arg25Bands.SHORT_WAVE_INFRARED_2.name]

        data = read_dataset_data(dataset, bands=[band_nir, band_swir], x=x, y=y, x_size=x_size, y_size=y_size)
        data = calculate_nbr(data[band_nir], data[band_swir])

        return {NbrBands.NBR: data}

    # TCI calculated from ARG25

    elif dataset.dataset_type == DatasetType.TCI:

        bands = get_bands(DatasetType.ARG25, dataset.satellite)

        data = read_dataset_data(dataset, bands=bands, x=x, y=y, x_size=x_size, y_size=y_size)

        out = dict()

        for index in TasselCapIndex:
            out[TciBands[index.name]] = calculate_tassel_cap_index(data, TCI_COEFFICIENTS[dataset.satellite][index])

        return out

    # It is a "physical" dataset so just read it
    else:
        return read_dataset_data(dataset, bands, x, y, x_size, y_size)
    def go(self):

        import numpy
        from datacube.api.query import list_cells_as_list, list_tiles_as_list
        from datacube.config import Config

        # Verify that all the requested satellites have the same band combinations

        dataset_bands = get_bands(self.dataset_type, self.satellites[0])

        _log.info("dataset bands is [%s]", " ".join([b.name for b in dataset_bands]))

        for satellite in self.satellites:
            if dataset_bands != get_bands(self.dataset_type, satellite):
                _log.error("Satellites [%s] have differing bands", " ".join([satellite.name for satellite in self.satellites]))
                raise Exception("Satellites with different band combinations selected")

        bands = []

        dataset_bands_list = list(dataset_bands)

        if not self.bands:
            bands = dataset_bands_list

        else:
            for b in self.bands:
                bands.append(dataset_bands_list[b - 1])

        _log.info("Using bands [%s]", " ".join(band.name for band in bands))

        x_min, x_max, y_max, y_min = self.extract_bounds_from_vector()
        _log.debug("The bounds are [%s]", (x_min, x_max, y_min, y_max))

        cells_vector = self.extract_cells_from_vector()
        _log.debug("Intersecting cells_vector are [%d] [%s]", len(cells_vector), cells_vector)

        config = Config(os.path.expanduser("~/.datacube/config"))
        _log.debug(config.to_str())

        x_list = range(x_min, x_max + 1)
        y_list = range(y_min, y_max + 1)

        _log.debug("x = [%s] y=[%s]", x_list, y_list)

        cells_db = list()

        for cell in list_cells_as_list(x=x_list, y=y_list, acq_min=self.acq_min, acq_max=self.acq_max,
                                       satellites=[satellite for satellite in self.satellites],
                                       dataset_types=[self.dataset_type]):
            cells_db.append((cell.x, cell.y))

        _log.debug("Cells from DB are [%d] [%s]", len(cells_db), cells_db)

        cells = intersection(cells_vector, cells_db)
        _log.debug("Combined cells are [%d] [%s]", len(cells), cells)

        for (x, y) in cells:
            _log.info("Processing cell [%3d/%4d]", x, y)

            tiles = list_tiles_as_list(x=x_list, y=y_list, acq_min=self.acq_min, acq_max=self.acq_max,
                                       satellites=[satellite for satellite in self.satellites],
                                       dataset_types=[self.dataset_type])

            _log.info("There are [%d] tiles", len(tiles))

            if self.list_only:
                for tile in tiles:
                    _log.info("Would process [%s]", tile.datasets[self.dataset_type].path)
                continue

            # Calculate the mask for the cell

            mask_aoi = self.get_mask_aoi_cell(x, y)

            pixel_count = 4000 * 4000

            pixel_count_aoi = (mask_aoi == False).sum()

            _log.debug("mask_aoi is [%s]\n[%s]", numpy.shape(mask_aoi), mask_aoi)

            metadata = None

            with self.get_output_file() as csv_file:

                csv_writer = csv.writer(csv_file)

                import operator

                header = reduce(operator.add, [["DATE", "INSTRUMENT", "# PIXELS", "# PIXELS IN AOI"]] + [
                    ["%s - # DATA PIXELS" % b.name,
                     "%s - # DATA PIXELS AFTER PQA" % b.name,
                     "%s - # DATA PIXELS AFTER PQA WOFS" % b.name,
                     "%s - # DATA PIXELS AFTER PQA WOFS AOI" % b.name,
                     "%s - MIN" % b.name, "%s - MAX" % b.name, "%s - MEAN" % b.name] for b in bands])

                csv_writer.writerow(header)

                for tile in tiles:

                    _log.info("Processing tile [%s]", tile.datasets[self.dataset_type].path)

                    if self.list_only:
                        continue

                    if not metadata:
                        metadata = get_dataset_metadata(tile.datasets[self.dataset_type])

                    # Apply PQA if specified

                    pqa = None
                    mask_pqa = None

                    if self.mask_pqa_apply and DatasetType.PQ25 in tile.datasets:
                        pqa = tile.datasets[DatasetType.PQ25]
                        mask_pqa = get_mask_pqa(pqa, self.mask_pqa_mask)

                    _log.debug("mask_pqa is [%s]\n[%s]", numpy.shape(mask_pqa), mask_pqa)

                    # Apply WOFS if specified

                    wofs = None
                    mask_wofs = None

                    if self.mask_wofs_apply and DatasetType.WATER in tile.datasets:
                        wofs = tile.datasets[DatasetType.WATER]
                        mask_wofs = get_mask_wofs(wofs, self.mask_wofs_mask)

                    _log.debug("mask_wofs is [%s]\n[%s]", numpy.shape(mask_wofs), mask_wofs)

                    data = get_dataset_data(tile.datasets[self.dataset_type], bands=bands)
                    _log.debug("data is [%s]\n[%s]", numpy.shape(data), data)

                    pixel_count_data = dict()
                    pixel_count_data_pqa = dict()
                    pixel_count_data_pqa_wofs = dict()
                    pixel_count_data_pqa_wofs_aoi = dict()
                    mmin = dict()
                    mmax = dict()
                    mmean = dict()

                    for band in bands:

                        data[band] = numpy.ma.masked_equal(data[band], NDV)
                        _log.debug("masked data is [%s] [%d]\n[%s]", numpy.shape(data), numpy.ma.count(data), data)

                        pixel_count_data[band] = numpy.ma.count(data[band])

                        if pqa:
                            data[band].mask = numpy.ma.mask_or(data[band].mask, mask_pqa)
                            _log.debug("PQA masked data is [%s] [%d]\n[%s]", numpy.shape(data[band]), numpy.ma.count(data[band]), data[band])

                        pixel_count_data_pqa[band] = numpy.ma.count(data[band])

                        if wofs:
                            data[band].mask = numpy.ma.mask_or(data[band].mask, mask_wofs)
                            _log.debug("WOFS masked data is [%s] [%d]\n[%s]", numpy.shape(data[band]), numpy.ma.count(data[band]), data[band])

                        pixel_count_data_pqa_wofs[band] = numpy.ma.count(data[band])

                        data[band].mask = numpy.ma.mask_or(data[band].mask, mask_aoi)
                        _log.debug("AOI masked data is [%s] [%d]\n[%s]", numpy.shape(data[band]), numpy.ma.count(data[band]), data[band])

                        pixel_count_data_pqa_wofs_aoi[band] = numpy.ma.count(data[band])

                        mmin[band] = numpy.ma.min(data[band])
                        mmax[band] = numpy.ma.max(data[band])
                        mmean[band] = numpy.ma.mean(data[band])

                        # Convert the mean to an int...which is actually trickier than you would expect due to masking....

                        if numpy.ma.count(mmean[band]) != 0:
                            mmean[band] = mmean[band].astype(numpy.int16)

                    # Should we output if no data values found?
                    pixel_count_data_pqa_wofs_aoi_all_bands = reduce(operator.add, pixel_count_data_pqa_wofs_aoi.itervalues())
                    if pixel_count_data_pqa_wofs_aoi_all_bands == 0 and not self.output_no_data:
                        _log.info("Skipping dataset with no non-masked data values in ANY band")
                        continue

                    row = reduce(
                        operator.add,
                            [[tile.end_datetime,
                              self.decode_satellite_as_instrument(tile.datasets[self.dataset_type].satellite),
                              pixel_count, pixel_count_aoi]] +

                            [[pixel_count_data[band], pixel_count_data_pqa[band],
                              pixel_count_data_pqa_wofs[band], pixel_count_data_pqa_wofs_aoi[band],
                              mmin[band], mmax[band], mmean[band]] for band in bands])

                    csv_writer.writerow(row)