# --- load data # data_raw = json.load( open(f"../data/stats_raw_full.json", "r") ) data_raw = json.load(open(f"../data/{args.dataset}.json", "r")) data, meta, meta_full = datalib.load_data(config.DATA_FILE, config.META_FILE) config.init_dataset(meta_full) label_id = meta_full['label'] label_type = meta_full['description'][label_id]['type'] print("config =", config) print( f"Using dataset {meta_full['name']} with {meta_full['samples']} samples and {meta_full['classes']} classes." ) data_trn, data_val, data_tst, shuffle_idx = datalib.split( data, config.DATASEED) net = Net(meta) env = SeqEnv(data_tst, meta) agent = Agent(env, net, meta) net.load(config.MODEL_FILE) from pprint import pprint # net.eval() with torch.no_grad(): step = 0 tot_cst = 0 all_samples = [] step_dict = []
if config.SEED: np.random.seed(config.SEED) random.seed(config.SEED) torch.manual_seed(config.SEED) torch.cuda.manual_seed(config.SEED) # --- load data data, meta, meta_full = datalib.load_data(config.DATA_FILE, config.META_FILE) config.init_dataset(meta_full) print("config =", config) print( f"Using dataset {meta_full['name']} with {meta_full['samples']} samples and {meta_full['classes']} classes." ) data_trn, data_val, data_tst = datalib.split(data, config.DATASEED) net = Net(meta).to(config.DEVICE) env = Env(data_trn, meta) agent = Agent(env, net, meta) log_trn = Log(data_trn, net, meta) log_val = Log(data_val, net, meta) log_tst = Log(data_tst, net, meta) print(net) fps = utils.Fps() fps.start()