Esempio n. 1
0
    loss.backward()
    torch.nn.utils.clip_grad_norm_(net.parameters(), 3)
    optimizer.step()

    with torch.no_grad():
        z = (z[:, 1, :, :] > z[:, 0, :, :]).float()
        for j in range(batchsize):
            cm = torch.zeros(2, 2).cuda()
            for a, b in [(0, 0), (0, 1), (1, 0), (1, 1)]:
                cm[a][b] = torch.sum(
                    (z[j] == a).float() * (y[j] == b).float() * D[j])
            stats[batchchoise[j]] += cm

    if i % 100 == 99 or i < 10:
        print(i, "/50000", printloss / 100)
        printloss = torch.zeros(1).cuda()

    if i % 1000 == 999:
        torch.save(net, "build/model.pth")
        cm = torch.sum(stats, dim=0)
        perf = dataloader.perf(cm)
        print("perf", perf)
        if perf[0] > 92:
            print("training stops after reaching high training accuracy")
            os._exit(0)
        else:
            stats = torch.zeros((len(miniworld.cities), 2, 2)).cuda()

print("training stops after reaching time limit")
os._exit(0)
Esempio n. 2
0
            z = largeforward(net, x.unsqueeze(0))
            z = globalresize(z)
            z = (z[0, 1, :, :] > z[0, 0, :, :]).float()

            for a, b in [(0, 0), (0, 1), (1, 0), (1, 1)]:
                cm[k][a][b] += torch.sum(
                    (z == a).float() * (y == b).float() * D)

            if False:
                nextI = len(os.listdir("build"))
                debug = dataloader.torchTOpil(globalresize(x))
                debug = PIL.Image.fromarray(numpy.uint8(debug))
                debug.save("build/" + str(nextI) + "_x.png")
                debug = (2.0 * y - 1) * D * 127 + 127
                debug = debug.cpu().numpy()
                debug = PIL.Image.fromarray(numpy.uint8(debug))
                debug.save("build/" + str(nextI) + "_y.png")
                debug = z.cpu().numpy() * 255
                debug = PIL.Image.fromarray(numpy.uint8(debug))
                debug.save("build/" + str(nextI) + "_z.png")

        print("perf=", dataloader.perf(cm[k]))
        numpy.savetxt("build/tmp.txt", dataloader.perf(cm).cpu().numpy())

print("-------- results ----------")
for k, city in enumerate(miniworld.cities):
    print(city, dataloader.perf(cm[k]))

cm = torch.sum(cm, dim=0)
print("miniworld", dataloader.perf(cm))
Esempio n. 3
0
        x, y = x.cuda(), y.cuda().float()

        h, w = y.shape[0], y.shape[1]
        D = dataloader.distancetransform(y)
        globalresize = torch.nn.AdaptiveAvgPool2d((h, w))
        power2resize = torch.nn.AdaptiveAvgPool2d(
            ((h // 64) * 64, (w // 64) * 64))
        x = power2resize(x)

        z = largeforward(net, x.unsqueeze(0))
        z = globalresize(z)
        z = (z[0, 1, :, :] > z[0, 0, :, :]).float()

        for a, b in [(0, 0), (0, 1), (1, 0), (1, 1)]:
            cm[a][b] += torch.sum((z == a).float() * (y == b).float() * D)

        if True:
            nextI = len(os.listdir("build"))
            debug = dataloader.torchTOpil(globalresize(x))
            debug = PIL.Image.fromarray(numpy.uint8(debug))
            debug.save("build/" + str(nextI) + "_x.png")
            debug = (2.0 * y - 1) * D * 127 + 127
            debug = debug.cpu().numpy()
            debug = PIL.Image.fromarray(numpy.uint8(debug))
            debug.save("build/" + str(nextI) + "_y.png")
            debug = z.cpu().numpy() * 255
            debug = PIL.Image.fromarray(numpy.uint8(debug))
            debug.save("build/" + str(nextI) + "_z.png")

    print("perf=", dataloader.perf(cm))
Esempio n. 4
0
print("load data")
miniworld = dataloader.MiniWorld(flag="train")
miniworld.start()

print("train")
optimizer = torch.optim.Adam(net.parameters(), lr=0.0001)
if whereIam in ["ldtis706z", "wdtim719z"]:
    batchsize = 16
else:
    batchsize = 32
nbbatchs = 100000
printloss = torch.zeros(1).cuda()
stats = torch.zeros((len(miniworld.cities), 2, 2)).cuda()
for i in range(nbbatchs):
    if i % 500 > 70:
        perf = dataloader.perf(stats)

        perf = [(perf[j][0], j) for j in range(perf.shape[0])]
        perf = sorted(perf)

        priority = numpy.ones(len(perf))
        for j in range(stats.shape[0] // 2):
            priority[perf[j][1]] = 100

        x, y, batchchoise = miniworld.getbatch(batchsize, priority=priority)
    else:
        x, y, batchchoise = miniworld.getbatch(batchsize)
    x, y = x.cuda(), y.cuda()
    z = net(x)

    D = dataloader.distancetransform(y)
Esempio n. 5
0
                cm[a][b] = torch.sum(
                    (z[j] == a).float() * (y[j] == b).float() * D[j])
            stats[batchchoise[j]] += cm

        if i < 10:
            print(i, "/", nbbatchs, printloss)
        if i < 1000 and i % 100 == 99:
            print(i, "/", nbbatchs, printloss / 100)
            printloss = torch.zeros(1).cuda()
        if i >= 1000 and i % 300 == 299:
            print(i, "/", nbbatchs, printloss / 300)
            printloss = torch.zeros(1).cuda()

        if i % 1000 == 999:
            torch.save(net, "build/model.pth")
            perf = dataloader.perf(torch.sum(stats, dim=0))
            print(i, "perf", perf)
            if perf[0] > 92:
                print("training stops after reaching high training accuracy")
                os._exit(0)
            else:
                stats = torch.zeros((len(miniworld.cities), 2, 2)).cuda()

    if i > nbbatchs * 0.1:
        loss = loss * 0.5
    if i > nbbatchs * 0.2:
        loss = loss * 0.5
    if i > nbbatchs * 0.5:
        loss = loss * 0.5
    if i > nbbatchs * 0.8:
        loss = loss * 0.5
Esempio n. 6
0
        z = (z[:, 1, :, :] > z[:, 0, :, :]).float()
        for j in range(batchsize):
            cm = torch.zeros(2, 2).cuda()
            for a, b in [(0, 0), (0, 1), (1, 0), (1, 1)]:
                cm[a][b] = torch.sum(
                    (z[j] == a).float() * (y[j] == b).float() * D[j])
            stats[batchchoise[j]] += cm

    if i % 100 == 99:
        print(i, "/200000", printloss / 100)
        printloss = torch.zeros(1).cuda()

    if i % 1000 == 999:
        torch.save(net, "build/model.pth")
        cm = torch.sum(stats, dim=0)
        perf = dataloader.perf(cm)
        print("perf", perf)
        if perf[0] > 92:
            print("training stops after reaching high training accuracy")
            os._exit(0)
        else:
            if len(sys.argv) == 2 and sys.argv[1] == "penalizemin":
                perfs = [
                    dataloader.perf(stats[j])[0] for j in range(stats.shape[0])
                ]
                tmp = perfs[:]
                sorted(tmp)
                threshold = tmp[stats.shape[0] // 3 + 1]
                worse = set([
                    j for j in range(stats.shape[0]) if perfs[j] <= threshold
                ])