def Demo(opt): if opt.mode == 'video': if opt.modality == 'R': video_loader = VideoLoader(opt.video_path).start() (fourcc, fps, w, h) = video_loader.videoinfo() #load recognition loader print('Loading model...') sys.stdout.flush() Recognition= RecognitionLoader(video_loader, recognition_classes, opt.temporal_sample_length, step=opt.recognize_sample_step).start() #data writer if opt.save_video: if not os.path.exists(opt.out_path): os.makedirs(opt.out_path) save_path = os.path.join(opt.out_path, 'VideoDemo.avi') writer = DataWriter(Recognition, savepath=save_path, save_video=opt.save_video, vis=opt.show, fps=fps, frameSize=(w, h)).start() print('output video has been saved in %s'%save_path) writer.stop() elif opt.modality == 'DR': if opt.save_video: if not os.path.exists(opt.out_path): os.makedirs(opt.out_path) out_path = os.path.join(opt.out_path, 'result.avi') video_DR = Video_Detect_Recognition_Processor(opt.video_path, out_path, detect_classes, recognition_classes).start() video_DR.read_detect() if opt.mode == 'camera': if opt.modality == 'R': CameraRecognitionLoader = CameraRecognition(classes).start() elif opt.modality== 'DR': #Camera = CameraLoader().start() #Detect = Detect_Recognition_Processor(classes).start() #Recognize = RecognizeProcessor(Detect, classes).start() DR = Read_Detect_Recognition_Processor(detect_classes, recognition_classes).start() DR.read_detect()
def main(): outSize = (64, 64) sp = False video_loader = VideoLoader("kunkun_nmsl_Trim.mp4", batchSize=32, wh_rate=(1, 1), inDim=outSize, sp=sp) (fourcc, fps, frameSize, shape_dst, ow, oh) = video_loader.videoinfo() # fps = 10 # frameSize = outSize print(fourcc, fps, frameSize, shape_dst, ow, oh) num_frames = video_loader.videoLen() save_path = 'out_video/kunkun_nmsl_2.avi' fourcc = cv2.VideoWriter_fourcc(*'XVID') stream = cv2.VideoWriter(save_path, fourcc, fps, frameSize) assert stream.isOpened(), 'Cannot open video for writing' video_loader.start() save_loader = saveFrame(video_loader, sp=sp).start() ascend_loader = AscendHost(save_loader, sp=sp).start() collect_loader = DataCollector(ascend_loader, num_job=8, sp=sp).start() post_processor = PostProcessor(collect_loader, remap=(shape_dst, ow, oh), vis=True, nobg=True, sp=sp).start() # post_processor = PostProcessor(collect_loader, remap=(shape_dst, ow, oh), vis=True, sp=sp).start() cnt = 0 while True: cnt += 1 start = time.time() (img_render, img, orig_img, im_name) = post_processor.getitem() if orig_img is None: print('All done!') break # orig_img = img_render cv2.imshow("Demo", orig_img) cv2.waitKey(90) stream.write(orig_img) interval = time.time() - start print("Time: {:.4f}\t{:04d}/{:04d}".format(interval, cnt, num_frames)) # sys.stdout.flush() stream.release()
def get_det_processor(file_name): videofile = file_name mode = args.mode if not os.path.exists(args.outputpath): os.mkdir(args.outputpath) if not len(videofile): raise IOError('Error: must contain --video') # Load input video data_loader = VideoLoader(videofile, batchSize=args.detbatch).start() (fourcc, fps, frameSize) = data_loader.videoinfo() # Load detection loader print('Loading YOLO model..') sys.stdout.flush() det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start() det_processor = DetectionProcessor(det_loader).start() return det_processor
def __init__(self, videofile, mode='normal'): self.videofile = videofile self.mode = mode self.data_loader = VideoLoader(self.videofile, batchSize=args.detbatch).start() (fourcc, fps, frameSize) = self.data_loader.videoinfo() self.fourcc = fourcc self.fps = fps self.frameSize = frameSize self.det_loader = DetectionLoader(self.data_loader, batchSize=args.detbatch).start() self.det_processor = DetectionProcessor(self.det_loader).start() self.pose_dataset = Mscoco() save_path = os.path.join( args.outputpath, 'AlphaPose_' + ntpath.basename(self.videofile).split('.')[0] + '.mp4') self.writer = DataWriter(args.save_video, save_path, cv2.VideoWriter_fourcc(*'DIVX'), self.fps, self.frameSize).start() self.results = list()
def handle_video(videofile): args.video = videofile videofile = args.video mode = args.mode if not len(videofile): raise IOError('Error: must contain --video') # Load input video data_loader = VideoLoader(videofile, batchSize=args.detbatch).start() (fourcc, fps, frameSize) = data_loader.videoinfo() print('the video is {} f/s'.format(fps)) # Load detection loader print('Loading YOLO model..') sys.stdout.flush() det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start() # start a thread to read frames from the file video stream det_processor = DetectionProcessor(det_loader).start() # Load pose model pose_dataset = Mscoco() if args.fast_inference: pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset) else: pose_model = InferenNet(4 * 1 + 1, pose_dataset) pose_model.cuda() pose_model.eval() runtime_profile = {'dt': [], 'pt': [], 'pn': []} # Data writer save_path = os.path.join( args.outputpath, 'AlphaPose_' + ntpath.basename(videofile).split('.')[0] + '.avi') writer = DataWriter(args.save_video, save_path, cv2.VideoWriter_fourcc(*'XVID'), fps, frameSize).start() im_names_desc = tqdm(range(data_loader.length())) batchSize = args.posebatch for i in im_names_desc: start_time = getTime() with torch.no_grad(): (inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read() if orig_img is None: break if boxes is None or boxes.nelement() == 0: writer.save(None, None, None, None, None, orig_img, im_name.split('/')[-1]) continue ckpt_time, det_time = getTime(start_time) runtime_profile['dt'].append(det_time) # Pose Estimation datalen = inps.size(0) leftover = 0 if (datalen) % batchSize: leftover = 1 num_batches = datalen // batchSize + leftover hm = [] for j in range(num_batches): inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)].cuda() hm_j = pose_model(inps_j) hm.append(hm_j) hm = torch.cat(hm) ckpt_time, pose_time = getTime(ckpt_time) runtime_profile['pt'].append(pose_time) hm = hm.cpu().data writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split('/')[-1]) ckpt_time, post_time = getTime(ckpt_time) runtime_profile['pn'].append(post_time) if args.profile: # TQDM im_names_desc.set_description( 'det time: {dt:.4f} | pose time: {pt:.4f} | post processing: {pn:.4f}' .format(dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn']))) if (args.save_img or args.save_video) and not args.vis_fast: print( '===========================> Rendering remaining images in the queue...' ) print( '===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).' ) while (writer.running()): pass writer.stop() final_result = writer.results() # 获取第 0 个框的人 kpts = [] for i in range(len(final_result)): try: preds = final_result[i]['result'] # preds[i]['keypoints'] (17,2) # preds[i]['kp_score'] (17,1) # preds[i]['proposal_score'] (1) # 选择 y 坐标最大的人 —— 用于打羽毛球视频 max_index = 0 min_index = 0 # max_y = np.mean(preds[0]['keypoints'].data.numpy()[:, 1]) min_x = np.mean(preds[0]['keypoints'].data.numpy()[:, 0]) max_x = np.mean(preds[0]['keypoints'].data.numpy()[:, 0]) for k in range(len(preds)): # tmp_y = np.mean(preds[k]['keypoints'].data.numpy()[:, 1]) tmp_x = np.mean(preds[k]['keypoints'].data.numpy()[:, 0]) # if tmp_y > max_y: if tmp_x < min_x: min_index = k # max_y = tmp_y min_x = tmp_x for k in range(len(preds)): # tmp_y = np.mean(preds[k]['keypoints'].data.numpy()[:, 1]) tmp_x = np.mean(preds[k]['keypoints'].data.numpy()[:, 0]) # if tmp_y > max_y: if tmp_x > max_x: max_index = k max_x = tmp_x mid_index = 0 for k in range(len(preds)): if k == max_index or k == min_index: continue mid_index = k kpt = preds[mid_index]['keypoints'] # kpt = final_result[i]['result'][0]['keypoints'] kpts.append(kpt.data.numpy()) except: # print(sys.exc_info()) print('error...') filename = os.path.basename(args.video).split('.')[0] name = filename + '.npz' kpts = np.array(kpts).astype(np.float32) # print('kpts npz save in ', name) # np.savez_compressed(name, kpts=kpts) return kpts
args.dataset = 'coco' if not args.sp: torch.multiprocessing.set_start_method('forkserver', force=True) torch.multiprocessing.set_sharing_strategy('file_system') if __name__ == "__main__": videofile = args.video mode = args.mode if not os.path.exists(args.outputpath): os.mkdir(args.outputpath) if not len(videofile): raise IOError('Error: must contain --video') # Load input video data_loader = VideoLoader(videofile, batchSize=args.detbatch).start() (fourcc, fps, frameSize) = data_loader.videoinfo() # Load detection loader print('Loading YOLO model..') sys.stdout.flush() det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start() det_processor = DetectionProcessor(det_loader).start() # Load pose model pose_dataset = Mscoco() if args.fast_inference: pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset) else: pose_model = InferenNet(4 * 1 + 1, pose_dataset) pose_model.cuda()
def handle_video(video_file): # =========== common =============== args.video = video_file base_name = os.path.basename(args.video) video_name = base_name[:base_name.rfind('.')] # =========== end common =============== # =========== image =============== # img_path = f'outputs/alpha_pose_{video_name}/split_image/' # args.inputpath = img_path # args.outputpath = f'outputs/alpha_pose_{video_name}' # if os.path.exists(args.outputpath): # shutil.rmtree(f'{args.outputpath}/vis', ignore_errors=True) # else: # os.mkdir(args.outputpath) # # if not len(video_file): # # raise IOError('Error: must contain --video') # if len(img_path) and img_path != '/': # for root, dirs, files in os.walk(img_path): # im_names = sorted([f for f in files if 'png' in f or 'jpg' in f]) # else: # raise IOError('Error: must contain either --indir/--list') # # Load input images # data_loader = ImageLoader(im_names, batchSize=args.detbatch, format='yolo').start() # print(f'Totally {data_loader.datalen} images') # =========== end image =============== # =========== video =============== args.outputpath = f'outputs/alpha_pose_{video_name}' if os.path.exists(args.outputpath): shutil.rmtree(f'{args.outputpath}/vis', ignore_errors=True) else: os.mkdir(args.outputpath) videofile = args.video mode = args.mode if not len(videofile): raise IOError('Error: must contain --video') # Load input video data_loader = VideoLoader(videofile, batchSize=args.detbatch).start() (fourcc, fps, frameSize) = data_loader.videoinfo() print('the video is {} f/s'.format(fps)) # =========== end video =============== # Load detection loader print('Loading YOLO model..') sys.stdout.flush() det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start() # start a thread to read frames from the file video stream det_processor = DetectionProcessor(det_loader).start() # Load pose model pose_dataset = Mscoco() if args.fast_inference: pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset) else: pose_model = InferenNet(4 * 1 + 1, pose_dataset) pose_model #.cuda() pose_model.eval() runtime_profile = {'dt': [], 'pt': [], 'pn': []} # Data writer save_path = os.path.join( args.outputpath, 'AlphaPose_' + ntpath.basename(video_file).split('.')[0] + '.avi') # writer = DataWriter(args.save_video, save_path, cv2.VideoWriter_fourcc(*'XVID'), fps, frameSize).start() writer = DataWriter(args.save_video).start() print('Start pose estimation...') im_names_desc = tqdm(range(data_loader.length())) batchSize = args.posebatch for i in im_names_desc: start_time = getTime() with torch.no_grad(): (inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read() if orig_img is None: print(f'{i}-th image read None: handle_video') break if boxes is None or boxes.nelement() == 0: writer.save(None, None, None, None, None, orig_img, im_name.split('/')[-1]) continue ckpt_time, det_time = getTime(start_time) runtime_profile['dt'].append(det_time) # Pose Estimation datalen = inps.size(0) leftover = 0 if datalen % batchSize: leftover = 1 num_batches = datalen // batchSize + leftover hm = [] for j in range(num_batches): inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)] #.cuda() hm_j = pose_model(inps_j) hm.append(hm_j) hm = torch.cat(hm) ckpt_time, pose_time = getTime(ckpt_time) runtime_profile['pt'].append(pose_time) hm = hm.cpu().data writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split('/')[-1]) ckpt_time, post_time = getTime(ckpt_time) runtime_profile['pn'].append(post_time) if args.profile: # TQDM im_names_desc.set_description( 'det time: {dt:.4f} | pose time: {pt:.4f} | post processing: {pn:.4f}' .format(dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn']))) if (args.save_img or args.save_video) and not args.vis_fast: print( '===========================> Rendering remaining images in the queue...' ) print( '===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).' ) while writer.running(): pass writer.stop() final_result = writer.results() write_json(final_result, args.outputpath) return final_result, video_name
def alphapose_process_video(videofile, pose_result_handler, inference_steps=1): if not len(videofile): raise IOError("Error: must contain --video") # Load input video print(f"Opening video {videofile}") data_loader = VideoLoader(videofile, batchSize=args.detbatch).start() (fourcc, fps, frameSize) = data_loader.videoinfo() # Load detection loader print("Loading YOLO model..") sys.stdout.flush() det_loader = DetectionLoader( data_loader, batchSize=args.detbatch, path=ALPHAPOSE_DIR, inference_steps=inference_steps, ).start() det_processor = DetectionProcessor(det_loader).start() # Load pose model pose_dataset = Mscoco() if args.fast_inference: pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset, path=ALPHAPOSE_DIR) else: pose_model = InferenNet(4 * 1 + 1, pose_dataset, path=ALPHAPOSE_DIR) pose_model.cuda() pose_model.eval() runtime_profile = {"dt": [], "pt": [], "pn": []} # Data writer args.save_video = args.video_savefile is not None writer = DataWriter( save_video=args. save_video, # Note: DataWriter uses args.save_video internally as well savepath=args.video_savefile, fourcc=cv2.VideoWriter_fourcc(*"XVID"), fps=fps, frameSize=frameSize, result_handler=pose_result_handler, ).start() im_names_desc = tqdm(range(data_loader.length())) batchSize = args.posebatch for i in im_names_desc: start_time = getTime() with torch.no_grad(): (inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read() if orig_img is None: break if boxes is None or boxes.nelement() == 0: writer.save(None, None, None, None, None, orig_img, im_name.split("/")[-1]) continue ckpt_time, det_time = getTime(start_time) runtime_profile["dt"].append(det_time) # Pose Estimation datalen = inps.size(0) leftover = 0 if (datalen) % batchSize: leftover = 1 num_batches = datalen // batchSize + leftover hm = [] for j in range(num_batches): inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)].cuda() hm_j = pose_model(inps_j) hm.append(hm_j) hm = torch.cat(hm) ckpt_time, pose_time = getTime(ckpt_time) runtime_profile["pt"].append(pose_time) hm = hm.cpu().data writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split("/")[-1]) ckpt_time, post_time = getTime(ckpt_time) runtime_profile["pn"].append(post_time) if args.profile: # TQDM im_names_desc.set_description( "det time: {dt:.3f} | pose time: {pt:.2f} | post processing: {pn:.4f}" .format( dt=np.mean(runtime_profile["dt"]), pt=np.mean(runtime_profile["pt"]), pn=np.mean(runtime_profile["pn"]), )) print("===========================> Finish Model Running.") if (args.save_img or args.video_savefile) and not args.vis_fast: print( "===========================> Rendering remaining images in the queue..." ) print( "===========================> If this step takes too long, you can enable " "the --vis_fast flag to use fast rendering (real-time).") while writer.running(): pass writer.stop() return writer.results()
args.outputpath, ('%s' % datetime.today().strftime('%y%m%d_%H%M%S'))) #init_detector # detector = GroundTruthDetections() #init_tracker # tracker = Sort(use_dlib=use_dlibTracker) # create instance of the SORT tracker if not os.path.exists(args.outputpath): os.mkdir(args.outputpath) if not len(videofile): raise IOError('Error: must contain --video') # Load input video fvs = VideoLoader(videofile).start() (fourcc, fps, frameSize) = fvs.videoinfo() # Data writer save_path = os.path.join( args.outputpath, 'AlphaPose_' + videofile.split('/')[-1].split('.')[0] + '.avi') writer = DataWriter(args.save_video, save_path, cv2.VideoWriter_fourcc(*'XVID'), fps, frameSize).start() # Load YOLO model print('Loading YOLO model..') det_model = Darknet("yolo/cfg/yolov3.cfg") det_model.load_weights('models/yolo/yolov3.weights') det_model.net_info['height'] = args.inp_dim
def main(file_name): # videofile = args.video videofile = file_name mode = args.mode if not os.path.exists(args.outputpath): os.mkdir(args.outputpath) if not len(videofile): raise IOError('Error: must contain --video') # Load input video data_loader = VideoLoader(videofile, batchSize=args.detbatch).start() (fourcc, fps, frameSize) = data_loader.videoinfo() # Load detection loader print('Loading YOLO model..') sys.stdout.flush() det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start() det_processor = DetectionProcessor(det_loader).start() # Load pose model pose_dataset = Mscoco() if args.fast_inference: pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset) else: pose_model = InferenNet(4 * 1 + 1, pose_dataset) pose_model.cuda() pose_model.eval() runtime_profile = {'dt': [], 'pt': [], 'pn': []} # Data writer save_path = os.path.join( args.outputpath, 'AlphaPose_' + ntpath.basename(videofile).split('.')[0] + '.avi') writer = DataWriter(args.save_video, save_path, cv2.VideoWriter_fourcc(*'XVID'), fps, frameSize).start() im_names_desc = tqdm(range(data_loader.length())) batchSize = args.posebatch for i in im_names_desc: start_time = getTime() with torch.no_grad(): (inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read() if orig_img is None: break if boxes is None or boxes.nelement() == 0: writer.save(None, None, None, None, None, orig_img, im_name.split('/')[-1]) continue ckpt_time, det_time = getTime(start_time) runtime_profile['dt'].append(det_time) # Pose Estimation datalen = inps.size(0) leftover = 0 if (datalen) % batchSize: leftover = 1 num_batches = datalen // batchSize + leftover hm = [] for j in range(num_batches): inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)].cuda() hm_j = pose_model(inps_j) hm.append(hm_j) hm = torch.cat(hm) ckpt_time, pose_time = getTime(ckpt_time) runtime_profile['pt'].append(pose_time) hm = hm.cpu().data import ipdb ipdb.set_trace() writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split('/')[-1]) ckpt_time, post_time = getTime(ckpt_time) runtime_profile['pn'].append(post_time) if args.profile: # TQDM im_names_desc.set_description( 'det time: {dt:.4f} | pose time: {pt:.4f} | post processing: {pn:.4f}' .format(dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn']))) print('===========================> Finish Model Running.') if (args.save_img or args.save_video) and not args.vis_fast: print( '===========================> Rendering remaining images in the queue...' ) print( '===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).' ) while (writer.running()): pass writer.stop() final_result = writer.results() write_json(final_result, args.outputpath)
def handle_video(videofile, no_nan=True): args.video = videofile videofile = args.video mode = args.mode if not len(videofile): raise IOError('Error: must contain --video') # Load input video data_loader = VideoLoader(videofile, batchSize=args.detbatch).start() (fourcc, fps, frameSize) = data_loader.videoinfo() cam_w = frameSize[0] cam_h = frameSize[1] print('the video is {} f/s'.format(fps)) # Load detection loader print('Loading YOLO model..') sys.stdout.flush() det_loader = DetectionLoader(data_loader, batchSize=args.detbatch).start() # start a thread to read frames from the file video stream det_processor = DetectionProcessor(det_loader).start() # Load pose model pose_dataset = Mscoco() if args.fast_inference: pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset) else: pose_model = InferenNet(4 * 1 + 1, pose_dataset) pose_model.cuda() pose_model.eval() runtime_profile = {'dt': [], 'pt': [], 'pn': []} # Data writer save_path = os.path.join( args.outputpath, 'AlphaPose_' + ntpath.basename(videofile).split('.')[0] + '.avi') writer = DataWriter(args.save_video, save_path, cv2.VideoWriter_fourcc(*'XVID'), fps, frameSize).start() im_names_desc = tqdm(range(data_loader.length())) batchSize = args.posebatch frames_w_pose = [] frame_cnt = 0 for i in im_names_desc: start_time = getTime() with torch.no_grad(): (inps, orig_img, im_name, boxes, scores, pt1, pt2) = det_processor.read() if orig_img is None: break frame_cnt += 1 if boxes is None or boxes.nelement() == 0: writer.save(None, None, None, None, None, orig_img, im_name.split('/')[-1]) continue frames_w_pose.append(frame_cnt - 1) ckpt_time, det_time = getTime(start_time) runtime_profile['dt'].append(det_time) # Pose Estimation datalen = inps.size(0) leftover = 0 if (datalen) % batchSize: leftover = 1 num_batches = datalen // batchSize + leftover hm = [] for j in range(num_batches): inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)].cuda() hm_j = pose_model(inps_j) hm.append(hm_j) hm = torch.cat(hm) ckpt_time, pose_time = getTime(ckpt_time) runtime_profile['pt'].append(pose_time) hm = hm.cpu().data writer.save(boxes, scores, hm, pt1, pt2, orig_img, im_name.split('/')[-1]) ckpt_time, post_time = getTime(ckpt_time) runtime_profile['pn'].append(post_time) if args.profile: # TQDM im_names_desc.set_description( 'det time: {dt:.4f} | pose time: {pt:.4f} | post processing: {pn:.4f}' .format(dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn']))) if (args.save_img or args.save_video) and not args.vis_fast: print( '===========================> Rendering remaining images in the queue...' ) print( '===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).' ) while (writer.running()): pass writer.stop() final_result = writer.results() kpts = [] if not no_nan: for i in range(frame_cnt): # initialize to NaN so we can interpolate later kpts.append(np.full((17, 2), np.nan, dtype=np.float32)) for i in range(len(final_result)): try: kpt = final_result[i]['result'][0]['keypoints'] if not no_nan: kpts[frames_w_pose[i]] = kpt.data.numpy() else: kpts.append(kpt.data.numpy()) except: print('error...') kpts = np.array(kpts).astype(np.float32) #filename = os.path.basename(args.video).split('.')[0] #name = filename + '.npz' #print('kpts npz save in ', name) #np.savez_compressed(name, kpts=kpts, fps=fps, cam_w=cam_w, cam_h=cam_h) return kpts, fps, cam_w, cam_h
def main(): save_path = './video_cap' video_name = 'webcam.avi' fourcc= cv2.VideoWriter_fourcc(*'XVID') fps = 24 input("Press Any Key to Open WebCam (press 'q' to stop): ") cap = cv2.VideoCapture(0) frameSize = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) writer = cv2.VideoWriter(save_path+'/'+video_name, fourcc, fps, frameSize) for i in range(42): cap.read() start_write = False frame_cnt = 0 while True: ret, frame = cap.read() cv2.imshow("capture", frame) if start_write: writer.write(frame) frame_cnt += 1 if cv2.waitKey(1) & 0xFF == ord('s'): print('Start Rec!') start_write = True if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() print("Start Processing!") outSize = (128,128) sp = False video_loader = VideoLoader(save_path+'/'+video_name, batchSize=32, wh_rate=(1,1), inDim=outSize, sp=sp, dataLen=frame_cnt) (fourcc, fps, frameSize, shape_dst, ow, oh) = video_loader.videoinfo() # fps = 10 print(fourcc, fps, frameSize, shape_dst, ow, oh, video_loader.videoLen()) num_frames = video_loader.videoLen() out_path = 'out_video/'+ video_name fourcc=cv2.VideoWriter_fourcc(*'XVID') stream = cv2.VideoWriter(out_path, fourcc, fps, frameSize) assert stream.isOpened(), 'Cannot open video for writing' video_loader.start() save_loader = saveFrame(video_loader, sp=sp).start() ascend_loader = AscendHost(save_loader, sp=sp).start() collect_loader = DataCollector(ascend_loader, num_job=8, sp=sp).start() post_processor = PostProcessor(collect_loader, remap=(shape_dst, ow, oh), vis=True, nobg=True, sp=sp).start() # post_processor = PostProcessor(collect_loader, remap=(shape_dst, ow, oh), vis=True, sp=sp).start() cnt = 0 while True: cnt += 1 start = time.time() (img_render, img, orig_img, im_name) = post_processor.getitem() if orig_img is None: print('All done!') break orig_img = img_render cv2.imshow("Demo", orig_img) cv2.waitKey(160) stream.write(orig_img) interval = time.time() - start print("Time: {:.4f}\t{:04d}/{:04d}".format(interval, cnt, num_frames)) # sys.stdout.flush() stream.release()