Esempio n. 1
0
    model = sft.SFT_Net()
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
model = model.cuda()

print('sftgan testing...')

idx = 0
for path in glob.glob(test_img_folder + '/*'):
    idx += 1
    basename = os.path.basename(path)
    base = os.path.splitext(basename)[0]
    print(idx, base)
    # read image
    img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
    img = modcrop(img, 8)
    img = img * 1.0 / 255
    if img.ndim == 2:
        img = np.expand_dims(img, axis=2)
    img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]],
                                        (2, 0, 1))).float()
    # matlab imresize
    img_LR = imresize(img, 1 / 4, antialiasing=True)
    img_LR = img_LR.unsqueeze(0)
    img_LR = img_LR.cuda()

    # read seg
    seg = torch.load(os.path.join(test_prob_path, base + '_bic.pth'))
    seg = seg.unsqueeze(0)
    # change probability
    # seg.fill_(0)
Esempio n. 2
0
    def __getitem__(self, index):
        HR_path, LR_path = None, None
        data_type = self.opt.get('data_type', 'img')
        scale = self.opt['scale']
        HR_size = self.opt['HR_size']

        # get HR image
        if self.opt['phase'] == 'train' and \
                random.choice(list(range(self.ratio))) == 0:  # read background images
            bg_index = random.randint(0, len(self.paths_HR_bg) - 1)
            HR_path = self.paths_HR_bg[bg_index]
            img_HR = util.read_img(env=data_type,
                                   path=HR_path,
                                   lmdb_env=self.HR_env_bg)
            seg = torch.FloatTensor(8, img_HR.shape[0],
                                    img_HR.shape[1]).fill_(0)
            seg[0, :, :] = 1  # background
        else:
            HR_path = self.paths_HR[index]
            img_HR = util.read_img(env=data_type,
                                   path=HR_path,
                                   lmdb_env=self.HR_env)
            seg = torch.load(
                HR_path.replace('/img/', '/bicseg/').replace('.png', '.pth'))
            # read segmentation files, you should change it to your settings.

        # modcrop in the validation / test phase
        if self.opt['phase'] != 'train':
            img_HR = util.modcrop(img_HR, 8)

        seg = np.transpose(seg.numpy(), (1, 2, 0))

        # get LR image
        if self.paths_LR:
            LR_path = self.paths_LR[index]
            img_LR = util.read_img(env=data_type,
                                   path=LR_path,
                                   lmdb_env=self.LR_env)
        else:  # down-sampling on-the-fly
            # randomly scale during training
            if self.opt['phase'] == 'train':
                random_scale = random.choice(self.random_scale_list)
                H_s, W_s, _ = seg.shape

                def _mod(n, random_scale, scale, thres):
                    rlt = int(n * random_scale)
                    rlt = (rlt // scale) * scale
                    return thres if rlt < thres else rlt

                H_s = _mod(H_s, random_scale, scale, HR_size)
                W_s = _mod(W_s, random_scale, scale, HR_size)
                img_HR = cv2.resize(np.copy(img_HR), (W_s, H_s),
                                    interpolation=cv2.INTER_LINEAR)
                seg = cv2.resize(np.copy(seg), (W_s, H_s),
                                 interpolation=cv2.INTER_NEAREST)

            H, W, _ = img_HR.shape
            # using matlab imresize
            img_LR = imresize(img_HR, 1 / scale, antialiasing=True)
            if img_LR.ndim == 2:
                img_LR = np.expand_dims(img_LR, axis=2)

        H, W, C = img_LR.shape
        if self.opt['phase'] == 'train':
            LR_size = HR_size // scale

            # randomly crop
            rnd_h = random.randint(0, max(0, H - LR_size))
            rnd_w = random.randint(0, max(0, W - LR_size))
            img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :]
            rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale)
            img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size,
                            rnd_w_HR:rnd_w_HR + HR_size, :]
            seg = seg[rnd_h_HR:rnd_h_HR + HR_size,
                      rnd_w_HR:rnd_w_HR + HR_size, :]

            # augmentation - flip, rotate
            img_LR, img_HR, seg = util.augment([img_LR, img_HR, seg],
                                               self.opt['use_flip'],
                                               self.opt['use_rot'])

            # category
            if 'building' in HR_path:
                category = 1
            elif 'plant' in HR_path:
                category = 2
            elif 'mountain' in HR_path:
                category = 3
            elif 'water' in HR_path:
                category = 4
            elif 'sky' in HR_path:
                category = 5
            elif 'grass' in HR_path:
                category = 6
            elif 'animal' in HR_path:
                category = 7
            else:
                category = 0  # background
        else:
            category = -1  # during val, useless

        # BGR to RGB, HWC to CHW, numpy to tensor
        img_HR = util.np2tensor(img_HR, normalize=self.znorm, add_batch=False)
        img_LR = util.np2tensor(img_LR, normalize=self.znorm, add_batch=False)
        seg = util.np2tensor(seg, normalize=self.znorm, add_batch=False)

        if LR_path is None:
            LR_path = HR_path
        return {
            'LR': img_LR,
            'HR': img_HR,
            'seg': seg,
            'category': category,
            'LR_path': LR_path,
            'HR_path': HR_path
        }
Esempio n. 3
0
    def __getitem__(self, index):
        HR_path, LR_path = None, None
        scale = self.opt.get('scale', 4)
        HR_size = self.opt.get('HR_size', 128)
        if HR_size:
            LR_size = HR_size // scale

        # Default case: tensor will result in the [0,1] range
        # Alternative: tensor will be z-normalized to the [-1,1] range
        znorm = self.opt.get('znorm', False)

        ######## Read the images ########
        #TODO: check cases where default of 3 channels will be troublesome
        image_channels = self.opt.get('image_channels', 3)

        # Check if LR Path is provided
        if self.paths_LR:
            #If LR is provided, check if 'rand_flip_LR_HR' is enabled
            if self.opt.get('rand_flip_LR_HR',
                            None) and self.opt['phase'] == 'train':
                LRHRchance = random.uniform(0, 1)
                flip_chance = self.opt.get('flip_chance', 0.05)
                #print("Random Flip Enabled")
            # Normal case, no flipping:
            else:
                LRHRchance = 0.
                flip_chance = 0.
                #print("No Random Flip")

            # get HR and LR images
            # If enabled, random chance that LR and HR images are flipped
            # Normal case, no flipping
            # If img_LR (LR_path) doesn't exist, use img_HR (HR_path)
            if LRHRchance < (1 - flip_chance):
                HR_path = self.paths_HR[index]
                LR_path = self.paths_LR[index]
                if LR_path is None:
                    LR_path = HR_path
                #print("HR kept")
            # Flipped case:
            # If img_HR (LR_path) doesn't exist, use img_HR (LR_path)
            else:
                HR_path = self.paths_LR[index]
                LR_path = self.paths_HR[index]
                if HR_path is None:
                    HR_path = LR_path
                #print("HR flipped")

            # Read the LR and HR images from the provided paths
            img_LR = util.read_img(self.LR_env, LR_path, out_nc=image_channels)
            img_HR = util.read_img(self.HR_env, HR_path, out_nc=image_channels)

            # Even if LR dataset is provided, force to generate aug_downscale % of downscales OTF from HR
            # The code will later make sure img_LR has the correct size
            if self.opt.get('aug_downscale', None):
                #aug_downscale = self.opt['aug_downscale']
                if np.random.rand() < self.opt['aug_downscale']:
                    img_LR = img_HR

        # If LR is not provided, use HR and modify on the fly
        else:
            HR_path = self.paths_HR[index]
            img_HR = util.read_img(self.HR_env, HR_path, out_nc=image_channels)
            img_LR = img_HR
            LR_path = HR_path

        # tmp_vis(img_HR, False)
        # tmp_vis(img_LR, False)

        ######## Modify the images ########

        # HR modcrop in the validation / test phase
        if self.opt['phase'] != 'train':
            img_HR = util.modcrop(img_HR, scale)

        # change color space if necessary
        # Note: Changing the LR colorspace here could make it so some colors are introduced when
        #  doing the augmentations later (ie: with Gaussian or Speckle noise), may be good if the
        #  model can learn to remove color noise in grayscale images, otherwise move to before
        #  converting to tensors
        # self.opt['color'] For both LR and HR as in the the original code, kept for compatibility
        # self.opt['color_HR'] and self.opt['color_LR'] for independent control
        if self.opt.get('color', None):  # Change both
            img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'],
                                          [img_HR])[0]
            img_LR = util.channel_convert(img_LR.shape[2], self.opt['color'],
                                          [img_LR])[0]
        if self.opt.get('color_HR', None):  # Only change HR
            img_HR = util.channel_convert(img_HR.shape[2],
                                          self.opt['color_HR'], [img_HR])[0]
        if self.opt.get('color_LR', None):  # Only change LR
            img_LR = util.channel_convert(img_LR.shape[2],
                                          self.opt['color_LR'], [img_LR])[0]

        ######## Augmentations ########

        #Augmentations during training
        if self.opt['phase'] == 'train':

            # Note: this is NOT recommended, HR should not be exposed to degradation, as it will
            # degrade the model's results, only added because it exist as an option in downstream forks
            # HR downscale
            if self.opt.get('hr_downscale', None):
                ds_algo = self.opt.get('hr_downscale_types', 777)
                hr_downscale_amt = self.opt.get('hr_downscale_amt', 2)
                if isinstance(hr_downscale_amt, list):
                    hr_downscale_amt = random.choice(hr_downscale_amt)
                # will ignore if 1 or if result is smaller than hr size
                if hr_downscale_amt > 1 and img_HR.shape[
                        0] // hr_downscale_amt >= HR_size and img_HR.shape[
                            1] // hr_downscale_amt >= HR_size:
                    #img_HR, hr_scale_interpol_algo = augmentations.scale_img(img_HR, hr_downscale_amt, algo=ds_algo)
                    img_HR, _ = Scale(img=img_HR,
                                      scale=hr_downscale_amt,
                                      algo=ds_algo)
                    # Downscales LR to match new size of HR if scale does not match after
                    if img_LR is not None and (
                            img_HR.shape[0] // scale != img_LR.shape[0]
                            or img_HR.shape[1] // scale != img_LR.shape[1]):
                        #img_LR, lr_scale_interpol_algo = augmentations.scale_img(img_LR, hr_downscale_amt, algo=ds_algo)
                        img_LR, _ = Scale(img=img_LR,
                                          scale=hr_downscale_amt,
                                          algo=ds_algo)

            # Validate there's an img_LR, if not, use img_HR
            if img_LR is None:
                img_LR = img_HR
                print("Image LR: ", LR_path, (
                    "was not loaded correctly, using HR pair to downscale on the fly."
                ))

            # Check that HR and LR have the same dimensions ratio, else use an option to process
            #TODO: add options variable
            shape_change = self.opt.get('shape_change',
                                        'reshape_hr')  #"reshape_lr"
            if img_HR.shape[0] // img_LR.shape[0] != img_HR.shape[
                    1] // img_LR.shape[1]:
                if shape_change == "reshape_lr":
                    img_LR = transforms.Resize(
                        (int(img_HR.shape[0] / scale),
                         int(img_HR.shape[1] / scale)),
                        interpolation="BILINEAR")(np.copy(img_LR))
                elif shape_change == "reshape_hr":
                    # print("pre: ", img_HR.shape[0], img_HR.shape[1])
                    nh = img_HR.shape[0] * (2 * img_LR.shape[1]) // (
                        img_LR.shape[0] + img_LR.shape[1])
                    nw = img_HR.shape[1] * (2 * img_LR.shape[0]) // (
                        img_LR.shape[0] + img_LR.shape[1])
                    #TODO: temporary change to test contextual loss with unaligned LR-HR pairs, forcing them to have the correct scale
                    #img_HR, _ = augmentations.resize_img(np.copy(img_HR), newdim=(img_LR.shape[1]*scale,img_LR.shape[0]*scale), algo=cv2.INTER_LINEAR)
                    #img_HR = transforms.Resize((img_LR.shape[0]*scale,img_LR.shape[1]*scale), interpolation="BILINEAR")(np.copy(img_HR))
                    img_HR = transforms.Resize(
                        (nh, nw), interpolation="BILINEAR")(np.copy(img_HR))
                    # print("post: ", img_HR.shape[0], img_HR.shape[1])
                    img_LR = transforms.Resize(
                        (int(img_HR.shape[0] / scale),
                         int(img_HR.shape[1] / scale)),
                        interpolation="BILINEAR")(np.copy(img_LR))
                #TODO: check, this may not make sense
                # elif shape_change == "pad_lr":
                #     LR_pad, _ = get_pad(img_LR, HR_size//scale, fill=0, padding_mode='constant')
                #     img_LR = LR_pad(np.copy(img_LR))
                else:  # generate new LR from HR
                    #TODO: disabled to test cx loss
                    #print("Warning: img_LR dimensions ratio does not match img_HR dimensions ratio for: ", HR_path)
                    img_LR = img_HR

            # centercrop image
            if self.opt['center_crop'] == True:
                if img_HR.shape[0] > img_HR.shape[1]:
                    img_HR = transforms.CenterCrop(
                        (img_HR.shape[1], img_HR.shape[1]))(np.copy(img_HR))
                    img_LR = transforms.CenterCrop(
                        (img_HR.shape[1], img_HR.shape[1]))(np.copy(img_LR))
                else:
                    img_HR = transforms.CenterCrop(
                        (img_HR.shape[0], img_HR.shape[0]))(np.copy(img_HR))
                    img_LR = transforms.CenterCrop(
                        (img_HR.shape[0], img_HR.shape[0]))(np.copy(img_LR))

            # resize lr and hr image to given hr dimension
            if self.opt['resize_HR_dimension'] == True:
                img_HR = transforms.Resize(
                    (self.opt['HR_size'], self.opt['HR_size']),
                    interpolation="BILINEAR")(np.copy(img_HR))
                img_LR = transforms.Resize(
                    (self.opt['HR_size'], self.opt['HR_size']),
                    interpolation="BILINEAR")(np.copy(img_LR))

            # Random Crop (reduce computing cost and adjust images to correct size first)
            if img_HR.shape[0] > HR_size or img_HR.shape[1] > HR_size:
                #Here the scale should be in respect to the images, not to the training scale (in case they are being scaled on the fly)
                scaleor = img_HR.shape[0] // img_LR.shape[0]
                img_HR, img_LR = augmentations.random_crop_pairs(
                    img_HR, img_LR, HR_size, scaleor)

            #TODO: test to be removed
            # img_HR = transforms.Resize((HR_size-100,img_HR.shape[1]), interpolation="BILINEAR")(np.copy(img_HR))
            # img_LR = transforms.Resize((LR_size-(100//scale),img_LR.shape[1]), interpolation="BILINEAR")(np.copy(img_LR))
            # Or if the HR images are too small, Resize to the HR_size size and fit LR pair to LR_size too
            #TODO: add options variable
            dim_change = self.opt.get('dim_change', 'pad')
            if img_HR.shape[0] < HR_size or img_HR.shape[1] < HR_size:
                if dim_change == "resize":
                    #TODO: temp disabled to test
                    #print("Warning: Image: ", HR_path, " size does not match HR size: (", HR_size,"). The image size is: ", img_HR.shape)
                    # rescale HR image to the HR_size
                    # img_HR, _ = augmentations.resize_img(np.copy(img_HR), newdim=(HR_size,HR_size), algo=cv2.INTER_LINEAR)
                    img_HR = transforms.Resize(
                        (HR_size, HR_size),
                        interpolation="BILINEAR")(np.copy(img_HR))
                    # rescale LR image to the LR_size (The original code discarded the img_LR and generated a new one on the fly from img_HR)
                    #img_LR, _ = augmentations.resize_img(np.copy(img_LR), newdim=(LR_size,LR_size), algo=cv2.INTER_LINEAR)
                    img_LR = transforms.Resize(
                        (LR_size, LR_size),
                        interpolation="BILINEAR")(np.copy(img_LR))
                elif dim_change == "pad":
                    # if img_LR is img_HR, padding will be wrong, downscaling LR before padding
                    if img_LR.shape[
                            0] != img_HR.shape[0] // scale or img_LR.shape[
                                1] != img_HR.shape[1] // scale:
                        ds_algo = 777  # default to matlab-like bicubic downscale
                        if self.opt.get(
                                'lr_downscale', None
                        ):  # if manually set and scale algorithms are provided, then:
                            ds_algo = self.opt.get('lr_downscale_types', 777)
                        if self.opt.get('lr_downscale', None) and self.opt.get(
                                'dataroot_kernels', None
                        ) and 999 in self.opt["lr_downscale_types"]:
                            ds_kernel = self.ds_kernels
                        else:
                            ds_kernel = None
                        img_LR, _ = Scale(img=img_LR,
                                          scale=scale,
                                          algo=ds_algo,
                                          ds_kernel=ds_kernel)

                    HR_pad, fill = get_pad(img_HR,
                                           HR_size,
                                           fill='random',
                                           padding_mode=self.opt.get(
                                               'pad_mode', 'constant'))
                    img_HR = HR_pad(np.copy(img_HR))

                    LR_pad, _ = get_pad(img_LR,
                                        HR_size // scale,
                                        fill=fill,
                                        padding_mode=self.opt.get(
                                            'pad_mode', 'constant'))
                    img_LR = LR_pad(np.copy(img_LR))

            # (Randomly) scale LR (from HR) during training if :
            # - LR dataset is not provided
            # - LR dataset is not in the correct scale
            # - Also to check if LR is not at the correct scale already (if img_LR was changed to img_HR)
            if img_LR.shape[0] != LR_size or img_LR.shape[1] != LR_size:
                ds_algo = 777  # default to matlab-like bicubic downscale
                if self.opt.get(
                        'lr_downscale', None
                ):  # if manually set and scale algorithms are provided, then:
                    ds_algo = self.opt.get('lr_downscale_types', 777)
                else:  # else, if for some reason img_LR is too large, default to matlab-like bicubic downscale
                    #if not self.opt['aug_downscale']: #only print the warning if not being forced to use HR images instead of LR dataset (which is a known case)
                    print(
                        "LR image is too large, auto generating new LR for: ",
                        LR_path)
                if self.opt.get('lr_downscale', None) and self.opt.get(
                        'dataroot_kernels',
                        None) and 999 in self.opt["lr_downscale_types"]:
                    ds_kernel = self.ds_kernels  #KernelDownscale(scale, self.kernel_paths, self.num_kernel)
                else:
                    ds_kernel = None
                #img_LR, scale_interpol_algo = augmentations.scale_img(img_LR, scale, algo=ds_algo)

                #print("algo")
                #print(ds_algo)
                img_LR, _ = Scale(img=img_LR,
                                  scale=scale,
                                  algo=ds_algo,
                                  ds_kernel=ds_kernel)
                # resize = get_resize(size=LR_size, scale=scale, ds_algo=ds_algo)
                # img_LR = resize(np.copy(img_LR))
            #"""

            # Rotations. 'use_flip' = 180 or 270 degrees (mirror), 'use_rot' = 90 degrees, 'HR_rrot' = random rotations +-45 degrees
            if (self.opt['use_flip'] or self.opt['use_rot']) and self.opt.get(
                    'hr_rrot', None):
                if np.random.rand() > 0.5:
                    img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \
                        self.opt['use_rot'])
                else:
                    if np.random.rand(
                    ) > 0.5:  # randomize the random rotations, so half the images are the original
                        img_HR, img_LR = augmentations.random_rotate_pairs(
                            img_HR, img_LR, HR_size, scale)
            elif (self.opt['use_flip'] or
                  self.opt['use_rot']) and not self.opt.get('hr_rrot', None):
                # augmentation - flip, rotate
                img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \
                    self.opt['use_rot'])
            elif self.opt.get('hr_rrot', None):
                if np.random.rand(
                ) > 0.5:  # randomize the random rotations, so half the images are the original
                    img_HR, img_LR = augmentations.random_rotate_pairs(
                        img_HR, img_LR, HR_size, scale)

            # Final sizes checks
            # if the resulting HR image size so far is too large or too small, resize HR to the correct size and downscale to generate a new LR on the fly
            # if the resulting LR so far does not have the correct dimensions, also generate a new HR-LR image pair on the fly

            if img_HR.shape[0] != HR_size or img_HR.shape[
                    1] != HR_size or img_LR.shape[
                        0] != LR_size or img_LR.shape[1] != LR_size:

                #if img_HR.shape[0] != HR_size or img_HR.shape[1] != HR_size:
                #TODO: temp disabled to test
                #print("Image: ", HR_path, " size does not match HR size: (", HR_size,"). The image size is: ", img_HR.shape)
                #if img_LR.shape[0] != LR_size or img_LR.shape[0] != LR_size:
                #TODO: temp disabled to test
                #print("Image: ", LR_path, " size does not match LR size: (", HR_size//scale,"). The image size is: ", img_LR.shape)

                # rescale HR image to the HR_size (should not be needed in LR case, but something went wrong before, just for sanity)
                #img_HR, _ = augmentations.resize_img(np.copy(img_HR), newdim=(HR_size,HR_size), algo=cv2.INTER_LINEAR)
                img_HR = transforms.Resize(
                    (HR_size, HR_size),
                    interpolation="BILINEAR")(np.copy(img_HR))
                # if manually provided and scale algorithms are provided, then use it, else use matlab imresize to generate LR pair
                ds_algo = self.opt.get('lr_downscale_types', 777)
                #img_LR, _ = augmentations.scale_img(img_HR, scale, algo=ds_algo)
                img_LR, _ = Scale(img_HR, scale, algo=ds_algo)

            # Below are the On The Fly augmentations

            # Apply "auto levels" to images
            #rand_levels = (1 - self.opt.get('rand_auto_levels', 0)) # Randomize for augmentation
            rand_levels = self.opt.get('rand_auto_levels', 0)
            #rand_percent = self.opt.get('rand_auto_per', 10)
            #if self.opt.get('auto_levels', None) and np.random.rand() > rand_levels:
            if self.opt.get('auto_levels', None) == 'HR' or self.opt.get(
                    'auto_levels', None) == 'Both':
                #img_HR = augmentations.simplest_cb(img_HR, znorm=znorm) #TODO: now images are processed in the [0,255] range
                #img_HR = augmentations.simplest_cb(img_HR)
                img_HR = transforms.FilterColorBalance(
                    p=rand_levels, percent=10, random_params=True)(img_HR)
            if self.opt.get('auto_levels', None) == 'LR' or self.opt.get(
                    'auto_levels', None) == 'Both':
                #img_LR = augmentations.simplest_cb(img_LR, znorm=znorm) #TODO: now images are processed in the [0,255] range
                #img_LR = augmentations.simplest_cb(img_LR)
                img_LR = transforms.FilterColorBalance(
                    p=rand_levels, percent=10, random_params=True)(img_LR)

            # Apply unsharpening mask to LR images
            '''
            rand_unsharp = (1 - self.opt.get('lr_rand_unsharp', 0)) # Randomize for augmentation
            if self.opt.get('lr_unsharp_mask', None) and np.random.rand() > rand_unsharp:
                #img_LR = augmentations.unsharp_mask(img_LR, znorm=znorm) #TODO: now images are processed in the [0,255] range
                img_LR = augmentations.unsharp_mask(img_LR)
            '''
            if self.opt.get('lr_unsharp_mask', None):
                lr_rand_unsharp = self.opt.get('lr_rand_unsharp', 0)
                img_LR = transforms.FilterUnsharp(p=lr_rand_unsharp)(img_LR)

            # Apply unsharpening mask to HR images
            '''
            rand_unsharp = (1 - self.opt.get('hr_rand_unsharp', 0)) # Randomize for augmentation
            if self.opt.get('hr_unsharp_mask', None) and np.random.rand() > rand_unsharp:
                #img_HR = augmentations.unsharp_mask(img_HR, znorm=znorm) #TODO: now images are processed in the [0,255] range
                img_HR = augmentations.unsharp_mask(img_HR)
            '''
            if self.opt.get('hr_unsharp_mask', None):
                hr_rand_unsharp = self.opt.get('hr_rand_unsharp', 0)
                img_HR = transforms.FilterUnsharp(p=hr_rand_unsharp)(img_HR)

            # Add noise to HR if enabled AND noise types are provided (for noise2noise and similar)
            if self.opt.get('hr_noise', None):
                noise_option = get_noise(self.opt.get('hr_noise_types', None))
                if noise_option:
                    #img_HR, hr_noise_algo = augmentations.noise_img(img_HR, noise_types=self.opt['hr_noise_types'])
                    img_HR = noise_option(img_HR)
                #TODO: check if necessary
                # else:
                #     print("Noise types 'hr_noise_types' not defined. Skipping OTF noise for HR.")

            # Create color fringes
            # Caution: Can easily destabilize a model
            # Only applied to a small % of the images. Around 20% and 50% appears to be stable.
            if self.opt.get('lr_fringes', None):
                lr_fringes_chance = self.opt['lr_fringes_chance'] if self.opt[
                    'lr_fringes_chance'] else 0.4
                if np.random.rand() > (1. - lr_fringes_chance):
                    img_LR = augmentations.translate_chan(img_LR)

            #"""
            #v LR blur AND blur types are provided, else will skip
            if self.opt.get('lr_blur', None):
                blur_option = get_blur(self.opt.get('lr_blur_types', None))
                if blur_option:
                    #img_LR, blur_algo, blur_kernel_size = augmentations.blur_img(img_LR, blur_algos=blur_algos)
                    img_LR = blur_option(img_LR)
                #TODO: check if necessary
                # else:
                #     print("Blur types 'lr_blur_types' not defined. Skipping OTF blur.")
            #"""

            #"""
            #v LR primary noise: Add noise to LR if enabled AND noise types are provided, else will skip
            if self.opt.get('lr_noise', None):
                noise_option = get_noise(self.opt.get('lr_noise_types', None),
                                         self.noise_patches)
                if noise_option:
                    #img_LR, noise_algo = augmentations.noise_img(img_LR, noise_types=self.opt['lr_noise_types'])
                    img_LR = noise_option(img_LR)
                #TODO: check if necessary
                # else:
                #     print("Noise types 'lr_noise_types' not defined. Skipping OTF noise.")

            #v LR secondary noise: Add additional noise to LR if enabled AND noise types are provided, else will skip
            if self.opt.get('lr_noise2', None):
                noise_option = get_noise(self.opt.get('lr_noise_types2', None),
                                         self.noise_patches)
                if noise_option:
                    #img_LR, noise_algo2 = augmentations.noise_img(img_LR, noise_types=self.opt['lr_noise_types2'])
                    img_LR = noise_option(img_LR)
                #TODO: check if necessary
                # else:
                #     print("Noise types 'lr_noise_types2' not defined. Skipping OTF secondary noise.")
            #"""

            #"""
            #v LR cutout / LR random erasing (for inpainting/classification tests)
            if self.opt.get(
                    'lr_cutout',
                    None) and (self.opt.get('lr_erasing', None) != True):
                # img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2)
                img_LR = transforms.Cutout(p=1, mask_size=img_LR.shape[0] //
                                           2)(img_LR)
            elif self.opt.get(
                    'lr_erasing',
                    None) and (self.opt.get('lr_cutout', None) != True):
                # img_LR = augmentations.random_erasing(img_LR)
                img_LR = transforms.RandomErasing(p=1)(img_LR, mode=[3])
            elif self.opt.get('lr_cutout', None) and self.opt.get(
                    'lr_erasing', None):
                if np.random.rand(
                ) > 0.5:  #only do cutout or erasing, not both at the same time
                    #img_LR = augmentations.cutout(img_LR, img_LR.shape[0] // 2, p=0.5)
                    img_LR = transforms.Cutout(p=1,
                                               mask_size=img_LR.shape[0] //
                                               2)(img_LR)
                else:
                    #img_LR = augmentations.random_erasing(img_LR, p=0.5, modes=[3])
                    img_LR = transforms.RandomErasing(p=1)(img_LR, mode=[3])
            #"""

        # For testing and validation
        if self.opt['phase'] != 'train':
            # Randomly downscale LR if enabled
            if self.opt['lr_downscale']:
                # if self.opt['lr_downscale_types']:
                #     img_LR, scale_interpol_algo = augmentations.scale_img(img_LR, scale, algo=self.opt['lr_downscale_types'])
                # else: # Default to matlab-like bicubic downscale
                #     img_LR, scale_interpol_algo = augmentations.scale_img(img_LR, scale, algo=777)
                img_LR, _ = Scale(img_LR,
                                  scale,
                                  algo=self.opt.get('lr_downscale_types', 777))

        # Alternative position for changing the colorspace of LR.
        # if self.opt['color_LR']: # Only change LR
        # img_LR = util.channel_convert(img_LR.shape[2], self.opt['color'], [img_LR])[0]

        # Debug #TODO: use the debugging functions to visualize or save images instead
        # Save img_LR and img_HR images to a directory to visualize what is the result of the on the fly augmentations
        # DO NOT LEAVE ON DURING REAL TRAINING
        # self.output_sample_imgs = True
        if self.opt['phase'] == 'train':
            if self.output_sample_imgs:
                import os
                # LR_dir, im_name = os.path.split(LR_path)
                HR_dir, im_name = os.path.split(HR_path)
                #baseHRdir, _ = os.path.split(HR_dir)
                #debugpath = os.path.join(baseHRdir, os.sep, 'sampleOTFimgs')

                # debugpath = os.path.join(os.path.split(LR_dir)[0], 'sampleOTFimgs')
                debugpath = os.path.join('D:/tmp_test', 'sampleOTFimgs')
                #print(debugpath)
                if not os.path.exists(debugpath):
                    os.makedirs(debugpath)

                import uuid
                hex = uuid.uuid4().hex
                cv2.imwrite(debugpath + "\\" + im_name + hex + '_LR.png',
                            img_LR)  #random name to save
                cv2.imwrite(debugpath + "\\" + im_name + hex + '_HR.png',
                            img_HR)  #random name to save
                # cv2.imwrite(debugpath+"\\"+im_name+hex+'_HR1.png',img_HRn1) #random name to save

        ######## Convert images to PyTorch Tensors ########
        """ # for debugging
        if (img_HR.min() < -1):
            describe_numpy(img_HR, all=True)
            print(HR_path)
        if (img_HR.max() > 1):
            describe_numpy(img_HR, all=True)
            print(HR_path)
        if (img_LR.min() < -1):
            describe_numpy(img_LR, all=True)
            print(LR_path)
        if (img_LR.max() > 1):
            describe_numpy(img_LR, all=True)
            print(LR_path)
        #"""

        # check for grayscale images #TODO: should not be needed anymore
        if len(img_HR.shape) < 3:
            img_HR = img_HR[..., np.newaxis]
        if len(img_LR.shape) < 3:
            img_LR = img_LR[..., np.newaxis]

        # tmp_vis(img_HR, False)
        # tmp_vis(img_LR, False)

        # edge-connect
        if self.opt['training_with_canny'] == True:
            img_HR_gray = cv2.cvtColor(img_HR, cv2.COLOR_BGR2GRAY)
            img_HR_canny = cv2.Canny(img_HR_gray, 100, 150)

            img_HR_gray = torch.from_numpy(img_HR_gray).unsqueeze(0)
            img_HR_canny = torch.from_numpy(img_HR_canny).unsqueeze(0)

        if self.opt['training_with_canny_SR'] == True:
            img_LR_gray = cv2.cvtColor(img_LR, cv2.COLOR_BGR2GRAY)
            img_LR_canny = cv2.Canny(img_LR_gray, 100, 150)
            img_LR_canny = torch.from_numpy(img_LR_canny).unsqueeze(0)

        if self.opt['noise_estimation'] == True:
            ds_kernel = torch.from_numpy(getattr(
                ds_kernel, 'used_kernel')).unsqueeze(0).float()
            noise_est = noise_estimate(img_LR, 4)
            sigma = torch.tensor(noise_est).float().view([1, 1, 1])

        img_HR = util.np2tensor(img_HR, normalize=znorm,
                                add_batch=False)  #.astype('uint8').clip(0,255)
        img_LR = util.np2tensor(img_LR, normalize=znorm, add_batch=False)

        if LR_path is None:
            LR_path = HR_path

        if self.opt['training_with_canny'] == True:
            return {
                'LR': img_LR,
                'HR': img_HR,
                'LR_path': LR_path,
                'HR_path': HR_path,
                'img_HR_gray': img_HR_gray,
                'img_HR_canny': img_HR_canny
            }
        elif self.opt['training_with_canny_SR'] == True:
            return {
                'LR': img_LR,
                'HR': img_HR,
                'LR_path': LR_path,
                'HR_path': HR_path,
                'img_LR_canny': img_LR_canny
            }
        if self.opt['noise_estimation'] == True:
            return {
                'LR': img_LR,
                'HR': img_HR,
                'LR_path': LR_path,
                'HR_path': HR_path,
                'ds_kernel': ds_kernel,
                'sigma': sigma
            }
        else:
            return {
                'LR': img_LR,
                'HR': img_HR,
                'LR_path': LR_path,
                'HR_path': HR_path
            }
Esempio n. 4
0
    def __getitem__(self, idx):
        scale = self.opt.get('scale', 4)
        HR_size = self.opt.get('HR_size', 128)
        LR_size = HR_size // scale
        idx_center = (self.num_frames - 1) // 2
        ds_kernel = None
        
        # Default case: tensor will result in the [0,1] range
        # Alternative: tensor will be z-normalized to the [-1,1] range
        znorm  = self.opt.get('znorm', False)

        if self.opt['phase'] == 'train':
            if self.opt.get('lr_downscale', None) and self.opt.get('dataroot_kernels', None) and 999 in self.opt["lr_downscale_types"]:
                ds_kernel = self.ds_kernels #KernelDownscale(scale, self.kernel_paths, self.num_kernel)

            # get a random video directory
            idx_video = random.randint(0, len(self.video_list)-1)
            video_dir = self.video_list[idx_video]
            # print(video_dir)
        else:
            # only one video and paths_LR/paths_HR is already the video dir
            video_dir = ""
        
        # list the frames in the directory 
        # hr_dir = self.trainset_dir + '/' + video_dir + '/hr'
        paths_HR = util.get_image_paths(self.opt['data_type'], os.path.join(self.paths_HR, video_dir))
        # print(paths_HR)

        if self.opt['phase'] == 'train':
            # random reverse augmentation
            random_reverse = self.opt.get('random_reverse', False)
            
            # skipping intermediate frames to learn from low FPS videos augmentation
            # testing random frameskip up to 'max_frameskip' frames
            max_frameskip = self.opt.get('max_frameskip', 0)
            if max_frameskip > 0:
                max_frameskip = min(max_frameskip, len(paths_HR)//(self.num_frames-1))
                frameskip = random.randint(1, max_frameskip)
            else:
                frameskip = 1
            # print("max_frameskip: ", max_frameskip)

            assert ((self.num_frames-1)*frameskip) <= (len(paths_HR)-1), (
                f'num_frame*frameskip must be smaller than the number of frames per video, check {video_dir}')
            
            # if number of frames of training video is for example 31, "max index -num_frames" = 31-3=28
            idx_frame = random.randint(0, (len(paths_HR)-1)-((self.num_frames-1)*frameskip))
            # print('frameskip:', frameskip)
        else:
            frameskip = 1
            idx_frame = idx
        
        '''
        List based frames loading
        '''
        if self.paths_LR:
            paths_LR = util.get_image_paths(self.opt['data_type'], os.path.join(self.paths_LR, video_dir))
        else:
            paths_LR = paths_HR
            ds_algo = 777 # default to matlab-like bicubic downscale
            if self.opt.get('lr_downscale', None): # if manually set and scale algorithms are provided, then:
                ds_algo  = self.opt.get('lr_downscale_types', 777)

        # get the video directory
        HR_dir, _ = os.path.split(paths_HR[idx_frame])
        LR_dir, _ = os.path.split(paths_HR[idx_frame])

        # read HR & LR frames
        HR_list = []
        LR_list = []
        resize_type = None
        LR_bicubic = None
        HR_center = None

        # print('len(paths_HR)', len(paths_HR))
        for i_frame in range(self.num_frames):
            # print('frame path:', paths_HR[int(idx_frame)+(frameskip*i_frame)])
            HR_img = util.read_img(None, paths_HR[int(idx_frame)+(frameskip*i_frame)], out_nc=self.image_channels)
            HR_img = util.modcrop(HR_img, scale)

            if self.opt['phase'] == 'train':
                '''
                If using individual image augmentations, get cropping parameters for reuse
                '''
                if self.otf_noise and i_frame == 0: #only need to calculate once, from the first frame
                    # reuse the cropping parameters for all LR and HR frames
                    hr_crop_params, lr_crop_params = get_crop_params(HR_img, LR_size, scale)
                    if self.opt.get('lr_noise', None):
                        # reuse the same noise type for all the frames
                        noise_option = get_noise(self.opt.get('lr_noise_types', None), self.noise_patches)
                    if self.opt.get('lr_blur', None):
                        # reuse the same blur type for all the frames
                        blur_option = get_blur(self.opt.get('lr_blur_types', None))

            if self.paths_LR:
                # LR images are provided at the correct scale
                LR_img = util.read_img(None, paths_LR[int(idx_frame)+(frameskip*i_frame)], out_nc=self.image_channels)
                if LR_img.shape == HR_img.shape:
                    LR_img, resize_type = Scale(img=HR_img, scale=scale, algo=ds_algo, ds_kernel=ds_kernel, resize_type=resize_type)
            else:
                # generate LR images on the fly
                LR_img, resize_type = Scale(img=HR_img, scale=scale, algo=ds_algo, ds_kernel=ds_kernel, resize_type=resize_type)

            # get the bicubic upscale of the center frame to concatenate for SR
            if self.y_only and self.srcolors and i_frame == idx_center:
                LR_bicubic, _ = Scale(img=LR_img, scale=1/scale, algo=777) # bicubic upscale
                HR_center = HR_img
                # tmp_vis(LR_bicubic, False)
                # tmp_vis(HR_center, False)
            
            if self.y_only:
                # extract Y channel from frames
                # normal path, only Y for both
                HR_img = util.bgr2ycbcr(HR_img, only_y=True)
                LR_img = util.bgr2ycbcr(LR_img, only_y=True)

            # crop patches randomly if using otf noise
            #TODO: make a BasicSR composable random_crop
            #TODO: note the original crop should go here and crop after loading each image, but could also be much simpler
            # to crop after concatenating. Check the speed difference.
            if self.otf_noise and self.opt['phase'] == 'train':
                HR_img, LR_img = apply_crop_params(HR_img, LR_img, hr_crop_params, lr_crop_params)
                if self.y_only and self.srcolors and i_frame == idx_center:
                    LR_bicubic, _ = apply_crop_params(LR_bicubic, None, hr_crop_params, None)
                    HR_center, _ = apply_crop_params(HR_center, None, hr_crop_params, None)

            # expand Y images to add the channel dimension
            # normal path, only Y for both
            if self.y_only:
                HR_img = util.fix_img_channels(HR_img, 1)
                LR_img = util.fix_img_channels(LR_img, 1)

            if self.opt['phase'] == 'train':
                # single frame augmentation (noise, blur, etc). Would only be efficient if patches are cropped in this loop
                if self.opt.get('lr_blur', None):
                    if blur_option:
                        LR_img = blur_option(LR_img)
                if self.opt.get('lr_noise', None):
                    if noise_option:
                        LR_img = noise_option(LR_img)
            
                # expand LR images to add the channel dimension again if needed (blur removes the grayscale channel)
                #TODO: add a if condition, can compare to the ndim before the augs, maybe move inside the aug condition
                # if not fullimgchannels: #TODO: TMP, this should be when using srcolors for HR or when training with 3 channels tests, separatedly
                if self.y_only:
                    LR_img = util.fix_img_channels(LR_img, 1)
            
            # print("HR_img.shape: ", HR_img.shape)
            # print("LR_img.shape", LR_img.shape)

            HR_list.append(HR_img) # h, w, c
            LR_list.append(LR_img) # h, w, c

        # print(len(HR_list))
        # print(len(LR_list))

        if self.opt['phase'] == 'train':
            # random reverse sequence augmentation
            if random_reverse and random.random() < 0.5:
                HR_list.reverse()
                LR_list.reverse()

        if not self.y_only:
            t = self.num_frames
            HR = [np.asarray(GT) for GT in HR_list]  # list -> numpy # input: list (contatin numpy: [H,W,C])
            HR = np.asarray(HR) # numpy, [T,H,W,C]
            h_HR, w_HR, c = HR_img.shape #HR_center.shape #TODO: check, may be risky
            HR = HR.transpose(1,2,3,0).reshape(h_HR, w_HR, -1) # numpy, [H',W',CT]
            LR = [np.asarray(LT) for LT in LR_list]  # list -> numpy # input: list (contatin numpy: [H,W,C])
            LR = np.asarray(LR) # numpy, [T,H,W,C]
            LR = LR.transpose(1,2,3,0).reshape(h_HR//scale, w_HR//scale, -1) # numpy, [Hl',Wl',CT]
        else:
            HR = np.concatenate((HR_list), axis=2) # h, w, t
            LR = np.concatenate((LR_list), axis=2) # h, w, t

        if self.opt['phase'] == 'train':
            '''
            # If not using individual image augmentations, this cropping should be faster, only once 
            '''
            # crop patches randomly. If not using otf noise, crop all concatenated images 
            if not self.otf_noise:
                HR, LR, hr_crop_params, _ = random_crop_mod(HR, LR, LR_size, scale)
                if self.y_only and self.srcolors:
                    LR_bicubic, _, _, _ = random_crop_mod(LR_bicubic, _, LR_size, scale, hr_crop_params)
                    HR_center, _, _, _ = random_crop_mod(HR_center, _, LR_size, scale, hr_crop_params)
                    # tmp_vis(LR_bicubic, False)
                    # tmp_vis(HR_center, False)

            # data augmentation
            #TODO: use BasicSR augmentations
            #TODO: use variables from config
            LR, HR, LR_bicubic, HR_center = augmentation()([LR, HR, LR_bicubic, HR_center])

        # tmp_vis(HR, False)
        # tmp_vis(LR, False)
        # tmp_vis(LR_bicubic, False)
        # tmp_vis(HR_center, False)

        if self.y_only:
            HR = util.np2tensor(HR, normalize=znorm, bgr2rgb=False, add_batch=False) # Tensor, [CT',H',W'] or [T, H, W]
            LR = util.np2tensor(LR, normalize=znorm, bgr2rgb=False, add_batch=False) # Tensor, [CT',H',W'] or [T, H, W]
        else:
            HR = util.np2tensor(HR, normalize=znorm, bgr2rgb=True, add_batch=False) # Tensor, [CT',H',W'] or [T, H, W]
            LR = util.np2tensor(LR, normalize=znorm, bgr2rgb=True, add_batch=False) # Tensor, [CT',H',W'] or [T, H, W]
        
        #TODO: TMP to test generating 3 channel images for SR loss
        # HR = util.np2tensor(HR, normalize=znorm, bgr2rgb=False, add_batch=True) # Tensor, [CT',H',W'] or [T, H, W]
        # LR = util.np2tensor(LR, normalize=znorm, bgr2rgb=False, add_batch=True) # Tensor, [CT',H',W'] or [T, H, W]
        
        # if self.srcolors:
        #     HR = HR.view(c,t,HR_size,HR_size) # Tensor, [C,T,H,W]
        if not self.y_only:
            HR = HR.view(c,t,HR_size,HR_size) # Tensor, [C,T,H,W]
            LR = LR.view(c,t,LR_size,LR_size) # Tensor, [C,T,H,W]
            if self.shape == 'TCHW':
                HR = HR.transpose(0,1) # Tensor, [T,C,H,W]
                LR = LR.transpose(0,1) # Tensor, [T,C,H,W]

        # generate Cr, Cb channels using bicubic interpolation
        #TODO: check, it might be easier to return the whole image and separate later when needed
        if self.y_only and self.srcolors:
            LR_bicubic = util.bgr2ycbcr(LR_bicubic, only_y=False)
            # HR_center = util.bgr2ycbcr(HR_center, only_y=False) #not needed, can directly use rgb image
            ## LR_bicubic = util.ycbcr2rgb(LR_bicubic, only_y=False) #test, looks ok
            ## HR_center = util.ycbcr2rgb(HR_center, only_y=False) #test, looks ok
            ## _, SR_cb, SR_cr = util.bgr2ycbcr(LR_bicubic, only_y=False, separate=True)
            LR_bicubic = util.np2tensor(LR_bicubic, normalize=znorm, bgr2rgb=False, add_batch=False)
            # HR_center = util.np2tensor(HR_center, normalize=znorm, bgr2rgb=False, add_batch=False) # will test using rgb image instead
            HR_center = util.np2tensor(HR_center, normalize=znorm, bgr2rgb=True, add_batch=False)
            #TODO: TMP to test generating 3 channel images for SR loss
            # LR_bicubic = util.np2tensor(LR_bicubic, normalize=znorm, bgr2rgb=False, add_batch=True)
            # HR_center = util.np2tensor(HR_center, normalize=znorm, bgr2rgb=False, add_batch=True)
        elif self.y_only and not self.srcolors:
            LR_bicubic = []
            HR_center = []
        else:
            HR_center = HR[:,idx_center,:,:] if self.shape == 'CTHW' else HR[idx_center,:,:,:]
            LR_bicubic = []

        # return toTensor(LR), toTensor(HR)
        return {'LR': LR, 'HR': HR, 'LR_path': LR_dir, 'HR_path': HR_dir, 'LR_bicubic': LR_bicubic, 'HR_center': HR_center}
Esempio n. 5
0
    def __getitem__(self, idx):
        scale = self.opt.get('scale', 4)
        idx_center = (self.num_frames - 1) // 2
        h_LR = None
        w_LR = None

        # Default case: tensor will result in the [0,1] range
        # Alternative: tensor will be z-normalized to the [-1,1] range
        znorm  = self.opt.get('znorm', False)

        # only one video and paths_LR/paths_HR is already the video dir
        video_dir = ""
        
        # list the frames in the directory 
        # hr_dir = self.trainset_dir + '/' + video_dir + '/hr'

        '''
        List based frames loading
        '''
        paths_LR = util.get_image_paths(self.opt['data_type'], os.path.join(self.paths_LR, video_dir))

        assert self.num_frames <= len(paths_LR), (
            f'num_frame must be smaller than the number of frames per video, check {video_dir}')

        idx_frame = idx
        LR_name = paths_LR[idx_frame + 1] # center frame
        # print(LR_name)
        # print(len(self.video_list))

        # read LR frames
        # HR_list = []
        LR_list = []
        resize_type = None
        LR_bicubic = None
        for i_frame in range(self.num_frames):
            if idx_frame == len(self.video_list)-2 and self.num_frames == 3:
                # print("second to last frame:", i_frame)
                if i_frame == 0:
                    LR_img = util.read_img(None, paths_LR[int(idx_frame)], out_nc=self.image_channels)
                else:
                    LR_img = util.read_img(None, paths_LR[int(idx_frame)+1], out_nc=self.image_channels)
            elif idx_frame == len(self.video_list)-1 and self.num_frames == 3:
                # print("last frame:", i_frame)
                LR_img = util.read_img(None, paths_LR[int(idx_frame)], out_nc=self.image_channels)
            # every other internal frame
            else:
                # print("normal frame:", idx_frame)
                LR_img = util.read_img(None, paths_LR[int(idx_frame)+(i_frame)], out_nc=self.image_channels)
            #TODO: check if this is necessary
            LR_img = util.modcrop(LR_img, scale)

            # get the bicubic upscale of the center frame to concatenate for SR
            if not self.y_only and self.srcolors and i_frame == idx_center:
                if self.opt.get('denoise_LRbic', False):
                    LR_bicubic = transforms.RandomAverageBlur(p=1, kernel_size=3)(LR_img)
                    # LR_bicubic = transforms.RandomBoxBlur(p=1, kernel_size=3)(LR_img)
                else:
                    LR_bicubic = LR_img
                LR_bicubic, _ = Scale(img=LR_bicubic, scale=1/scale, algo=777) # bicubic upscale
                # HR_center = HR_img
                # tmp_vis(LR_bicubic, False)
                # tmp_vis(HR_center, False)
            
            if self.y_only:
                # extract Y channel from frames
                # normal path, only Y for both
                LR_img = util.bgr2ycbcr(LR_img, only_y=True)

                # expand Y images to add the channel dimension
                # normal path, only Y for both
                LR_img = util.fix_img_channels(LR_img, 1)
                
                # print("HR_img.shape: ", HR_img.shape)
                # print("LR_img.shape", LR_img.shape)

            LR_list.append(LR_img) # h, w, c
            
            if not self.y_only and (not h_LR or not w_LR):
                h_LR, w_LR, c = LR_img.shape
        
        if not self.y_only:
            t = self.num_frames
            LR = [np.asarray(LT) for LT in LR_list]  # list -> numpy # input: list (contatin numpy: [H,W,C])
            LR = np.asarray(LR) # numpy, [T,H,W,C]
            LR = LR.transpose(1,2,3,0).reshape(h_LR, w_LR, -1) # numpy, [Hl',Wl',CT]
        else:
            LR = np.concatenate((LR_list), axis=2) # h, w, t

        if self.y_only:
            LR = util.np2tensor(LR, normalize=znorm, bgr2rgb=False, add_batch=False) # Tensor, [CT',H',W'] or [T, H, W]
        else:
            LR = util.np2tensor(LR, normalize=znorm, bgr2rgb=True, add_batch=False) # Tensor, [CT',H',W'] or [T, H, W]
            LR = LR.view(c,t,h_LR,w_LR) # Tensor, [C,T,H,W]
            if self.shape == 'TCHW':
                LR = LR.transpose(0,1) # Tensor, [T,C,H,W]

        if self.y_only and self.srcolors:
            # generate Cr, Cb channels using bicubic interpolation
            LR_bicubic = util.bgr2ycbcr(LR_bicubic, only_y=False)
            LR_bicubic = util.np2tensor(LR_bicubic, normalize=znorm, bgr2rgb=False, add_batch=False)
            HR_center = []
        else:
            LR_bicubic = []
            HR_center = []

        # return toTensor(LR), toTensor(HR)
        return {'LR': LR, 'LR_path': LR_name, 'LR_bicubic': LR_bicubic, 'HR_center': HR_center}
Esempio n. 6
0
    def __getitem__(self, index):
        HR_path, LR_path = None, None
        scale = self.opt['scale']
        HR_size = self.opt['HR_size']

        # get HR image
        HR_path = self.paths_HR[index]
        img_HR = util.read_img(self.HR_env, HR_path)
        # modcrop in the validation / test phase
        if self.opt['phase'] != 'train':
            img_HR = util.modcrop(img_HR, scale)
        # change color space if necessary
        if self.opt['color']:
            img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'],
                                          [img_HR])[0]

        # get LR image
        if self.paths_LR:
            LR_path = self.paths_LR[index]
            img_LR = util.read_img(self.LR_env, LR_path)
        else:  # down-sampling on-the-fly
            # randomly scale during training
            if self.opt['phase'] == 'train':
                random_scale = random.choice(self.random_scale_list)
                H_s, W_s, _ = img_HR.shape

                def _mod(n, random_scale, scale, thres):
                    rlt = int(n * random_scale)
                    rlt = (rlt // scale) * scale
                    return thres if rlt < thres else rlt

                H_s = _mod(H_s, random_scale, scale, HR_size)
                W_s = _mod(W_s, random_scale, scale, HR_size)
                img_HR = cv2.resize(np.copy(img_HR), (W_s, H_s),
                                    interpolation=cv2.INTER_LINEAR)
                # force to 3 channels
                if img_HR.ndim == 2:
                    img_HR = cv2.cvtColor(img_HR, cv2.COLOR_GRAY2BGR)

            H, W, _ = img_HR.shape
            # using matlab imresize
            img_LR = util.imresize_np(img_HR, 1 / scale, True)
            if img_LR.ndim == 2:
                img_LR = np.expand_dims(img_LR, axis=2)

        if self.opt['phase'] == 'train':
            # if the image size is too small
            H, W, _ = img_HR.shape
            if H < HR_size or W < HR_size:
                img_HR = cv2.resize(np.copy(img_HR), (HR_size, HR_size),
                                    interpolation=cv2.INTER_LINEAR)
                # using matlab imresize
                img_LR = util.imresize_np(img_HR, 1 / scale, True)
                if img_LR.ndim == 2:
                    img_LR = np.expand_dims(img_LR, axis=2)

            H, W, C = img_LR.shape
            LR_size = HR_size // scale

            # randomly crop
            rnd_h = random.randint(0, max(0, H - LR_size))
            rnd_w = random.randint(0, max(0, W - LR_size))
            img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :]
            rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale)
            img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size,
                            rnd_w_HR:rnd_w_HR + HR_size, :]

            # augmentation - flip, rotate
            img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \
                self.opt['use_rot'])

        # change color space if necessary
        if self.opt['color']:
            img_LR = util.channel_convert(
                C, self.opt['color'],
                [img_LR])[0]  # TODO during val no definetion

        # BGR to RGB, HWC to CHW, numpy to tensor
        if img_HR.shape[2] == 3:
            img_HR = img_HR[:, :, [2, 1, 0]]
            img_LR = img_LR[:, :, [2, 1, 0]]
        elif img_LR.shape[2] == 4:
            img_HR = img_HR[:, :, [2, 1, 0, 3]]
            img_LR = img_LR[:, :, [2, 1, 0, 3]]
        img_HR = torch.from_numpy(
            np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float()
        img_LR = torch.from_numpy(
            np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float()

        if LR_path is None:
            LR_path = HR_path
        return {
            'LR': img_LR,
            'HR': img_HR,
            'LR_path': LR_path,
            'HR_path': HR_path
        }