def __init__(self, config, road, simulation, representation): self.config = config self.road = road self.simulation = simulation self.representation = representation self.updateFrame = simulation.updateFrame self.acc = 0 self.collect = Collect(config, road, simulation, representation)
class DataScience(): def __init__(self, config, road, simulation, representation): self.config = config self.road = road self.simulation = simulation self.representation = representation self.updateFrame = simulation.updateFrame self.acc = 0 self.collect = Collect(config, road, simulation, representation) #self.ml = MachineLearning(collect) #self.analize = Analize(collect) def writeInput(self): """ Guardar los parametros de entrada""" self.collect.writeInput() def writeOutput(self): """ Guardar los parametros de salida""" self.collect.writeOutput() def update(self, dt): """ Actualizar los valores de los parametros de salida""" self.collecting(dt) def collecting(self, dt): """ Recaudar los parametros de salida""" self.acc += dt if self.acc >= self.updateFrame: self.collect.showRoad() self.collect.writeOutput() #self.collect.showSpeedLimits() self.acc = self.acc % (self.updateFrame + 0)