def __init__(self, data_path, img_size=(128, 64), normalize=True): self.data_path = data_path self.img_size = img_size self.normalize = normalize self.resize = Resize(self.img_size) self.to_tensor = ToTensor(normalize=self.normalize) self.mask_to_tensor = ToTensor(normalize=False) self.data = [] self.generate_index()
def __init__(self, pkl_path=None, normalize=True, num_instance=4): self.normalize = normalize self.to_tensor = ToTensor(normalize=self.normalize) #self.data = [] #self.generate_index() self.random_flip = RandomFlip(flip_prob=0.5) # 检查是否有该文件 if not os.path.exists(pkl_path): raise ValueError('{} not exists!!'.format(pkl_path)) # 打开pkl pid:[_,image_id,camera_id] with open(pkl_path, 'rb') as fs: self.pkl = pickle.load(fs) self.sort_keys = list(sorted(self.pkl.keys())) self.len = len(self.pkl) # nori self.nf = nori.Fetcher() # 一次性一个人取多少张图片 self.num_instance = num_instance
def __init__(self,img_size=(128, 64), bbox_threshold=200, pkl_path = None,normalize=True,num_instance=4): self.img_size = img_size self.normalize = normalize self.to_tensor = ToTensor(normalize=self.normalize) self.bbox_threshold = bbox_threshold self.random_flip = RandomFlip(flip_prob=0.5) self.resize = Resize(output_size=self.img_size) # 检查是否有该文件 if not os.path.exists(pkl_path): raise ValueError('{} not exists!!'.format(pkl_path)) # 打开pkl pid:[_,image_id,camera_id] with open(pkl_path, 'rb') as fs: self.pkl = pickle.load(fs) self.len = len(self.pkl) # nori self.nf = nori.Fetcher() # 一次性一个人取多少张图片 self.num_instance = num_instance
def __init__(self, dataset, transform=None): self.normalize = True self.to_tensor = ToTensor(normalize=self.normalize) self.dataset = dataset self.transform = transform
def __init__(self, data_path_list, normalize=True): self.data_path_list = data_path_list self.normalize = normalize self.to_tensor = ToTensor(normalize=self.normalize) self.data = [] self.generate_index() self.random_flip = RandomFlip(flip_prob=0.5)
def __init__(self, data_path_list, img_size=224, normalize=True): self.data_path_list = data_path_list self.img_size = img_size self.normalize = normalize self.to_tensor = ToTensor(normalize=self.normalize) self.data = [] self.generate_index() self.random_crop = RandomCrop(output_size=self.img_size) self.random_flip = RandomFlip(flip_prob=0.5) self.resize = Resize(output_size=int(self.img_size * 2))
def __init__(self, dataset): self.dataset = dataset self.normalize = True self.to_tensor = ToTensor(normalize=self.normalize)