Esempio n. 1
0
def get_activator_web(dev_split, test_split):
    data_name = "Web"
    ext_train = ExternalData(WebAllExternalDataParams())
    ds = BilinearDataset(WebDatasetAllParams(), external_data=ext_train)
    activator_params = WebBilinearActivatorParams()
    activator_params.TEST_SPLIT = test_split
    activator_params.DEV_SPLIT = dev_split
    module_params = WebLayeredBilinearModuleParams(
        ftr_len=ds.len_features, embed_vocab_dim=ext_train.len_embed())
    return data_name, BilinearMultiClassActivator(
        LayeredBilinearModuleGPU(module_params), activator_params, ds)
Esempio n. 2
0
def get_activator_protein(dev_split, test_split, topological_ftrs=True):
    data_name = "Protein"
    ext_train = ExternalData(ProteinAllExternalDataParams())
    ds_params = ProteinDatasetAllParams()
    if not topological_ftrs:
        ds_params.FEATURES = []
    ds = BilinearDataset(ds_params, external_data=ext_train)
    activator_params = ProteinBilinearActivatorParams()
    activator_params.TEST_SPLIT = test_split
    activator_params.DEV_SPLIT = dev_split
    module_params = ProteinLayeredBilinearModuleParams(
        ftr_len=ds.len_features, embed_vocab_dim=ext_train.len_embed())
    return data_name, BilinearMultiClassActivator(
        LayeredBilinearModule(module_params), activator_params, ds)
Esempio n. 3
0
def get_params_by_dataset(data):
    dict_classes = {
        "AIDS": [
            AidsDatasetAllParams, AidsLayeredBilinearModuleParams,
            AidsBilinearActivatorParams,
            ExternalData(AidsAllExternalDataParams()), False
        ],
        "PROTEIN": [
            ProteinDatasetAllParams, ProteinLayeredBilinearModuleParams,
            ProteinBilinearActivatorParams,
            ExternalData(ProteinAllExternalDataParams()), True
        ],
        "MUTAGEN": [
            MutagenDatasetAllParams, MutagenLayeredBilinearModuleParams,
            MutagenBilinearActivatorParams,
            ExternalData(MutagenAllExternalDataParams()), False
        ],
        "GREC": [
            GrecDatasetAllParams, GrecLayeredBilinearModuleParams,
            GrecBilinearActivatorParams,
            ExternalData(GrecAllExternalDataParams()), True
        ]
    }
    return dict_classes[data]
Esempio n. 4
0
class AidsBilinearActivatorParams(BilinearActivatorParams):
    def __init__(self):
        super().__init__()
        self.DEV_SPLIT = 0.1153
        self.TEST_SPLIT = 0.538
        self.LOSS = functional.binary_cross_entropy_with_logits  # f.factor_loss  #
        self.BATCH_SIZE = 128
        self.EPOCHS = 250
        self.DATASET = "Aids"


if __name__ == '__main__':
    ALL = True
    if ALL == True:
        ext_train = ExternalData(AidsAllExternalDataParams())
        aids_train_ds = BilinearDataset(AidsDatasetAllParams(),
                                        external_data=ext_train)

        activator = BilinearActivator(
            LayeredBilinearModule(
                AidsLayeredBilinearModuleParams(
                    ftr_len=aids_train_ds.len_features,
                    embed_vocab_dim=ext_train.len_embed())),
            AidsBilinearActivatorParams(), aids_train_ds)
        activator.train()

    if ALL == False:
        ext_train = ExternalData(AidsTrainExternalDataParams())
        ext_dev = ExternalData(AidsDevExternalDataParams(),
                               idx_to_symbol=ext_train.idx_to_symbol_dict)
Esempio n. 5
0
        self.BATCH_SIZE = 32
        self.EPOCHS = 300
        self.DATASET = "Protein - MultiClass"


if __name__ == '__main__':
    from bilinear_model import LayeredBilinearModule
    from dataset.dataset_model import BilinearDataset
    from dataset.dataset_external_data import ExternalData
    from multi_class_bilinear_activator import BilinearMultiClassActivator

    t = time.time()

    ALL = True
    if ALL == True:
        ext_train = ExternalData(ProteinAllExternalDataParams())
        aids_train_ds = BilinearDataset(ProteinDatasetAllParams(),
                                        external_data=ext_train)

        activator = BilinearMultiClassActivator(
            LayeredBilinearModule(
                ProteinLayeredBilinearModuleParams(
                    ftr_len=aids_train_ds.len_features,
                    embed_vocab_dim=ext_train.len_embed())),
            ProteinBilinearActivatorParams(), aids_train_ds)
        activator.train()

    if ALL == False:
        ext_train = ExternalData(ProteinTrainExternalDataParams())
        ext_dev = ExternalData(ProteinDevExternalDataParams(),
                               idx_to_symbol=ext_train.idx_to_symbol_dict)
                                         dropout=self.DROPOUT)
            ]
        self.BILINEAR_PARAMS = CoilRagBilinearLayerParams(
            self.LINEAR_PARAMS_LIST[self.NUM_LAYERS - 1].COL_DIM,
            self.LINEAR_PARAMS_LIST[0].ROW_DIM)


class CoilRagBilinearActivatorParams(BilinearActivatorParams):
    def __init__(self):
        super().__init__()
        self.DEV_SPLIT = 0.15
        self.TEST_SPLIT = 0.15
        self.LOSS = cross_entropy  # f.factor_loss  #
        self.BATCH_SIZE = 16
        self.EPOCHS = 500
        self.DATASET = "COIL_RAG - MultiClass"


if __name__ == '__main__':
    ext_train = ExternalData(CoilRagAllExternalDataParams())
    aids_train_ds = BilinearDataset(CoilRagDatasetAllParams(),
                                    external_data=ext_train)

    activator = BilinearMultiClassActivator(
        LayeredBilinearModule(
            CoilRagLayeredBilinearModuleParams(
                ftr_len=aids_train_ds.len_features,
                embed_vocab_dim=ext_train.len_embed())),
        CoilRagBilinearActivatorParams(), aids_train_ds)
    activator.train()
Esempio n. 7
0
            x0 = torch.cat([x0] + list_embed, dim=2)

        x1 = x0
        self._sync()
        for i in range(self._num_layers):
            x1 = self._linear_layers[i](A, x1)
        x2 = self._bilinear_layer(A, x0, x1)
        return x2


if __name__ == "__main__":
    from dataset.datset_sampler import ImbalancedDatasetSampler
    from params.aids_params import AidsAllExternalDataParams, AidsDatasetAllParams
    from dataset.dataset_external_data import ExternalData
    from dataset.dataset_model import BilinearDataset

    ext_train = ExternalData(AidsAllExternalDataParams())
    ds = BilinearDataset(AidsDatasetAllParams(), external_data=ext_train)
    dl = DataLoader(dataset=ds,
                    collate_fn=ds.collate_fn,
                    batch_size=64,
                    sampler=ImbalancedDatasetSampler(ds))
    m_params = LayeredBilinearModuleParams(
        ftr_len=ds.len_features, embed_vocab_dim=ext_train.len_embed())
    m_params.EMBED_DIMS = [20, 20]
    module = LayeredBilinearModule(m_params)
    # module = BilinearModule(BilinearModuleParams())
    for i, (_A, _D, _x0, _l) in enumerate(dl):
        _x2 = module(_A, _D, _x0)
        e = 0
Esempio n. 8
0
            labels_batch.append(l)

        return Tensor(adjacency_batch), Tensor(x_batch), Tensor(
            embeddings_batch).long(), Tensor(labels_batch).long()

    def __getitem__(self, index):
        gnx_id = self._idx_to_name[index]
        A, x, embed, label = self._data[gnx_id]
        embed = 0 if embed is None else Tensor(embed).long()
        return Tensor(A), Tensor(x), embed, label

    def __len__(self):
        return len(self._idx_to_name)


if __name__ == "__main__":
    from dataset.datset_sampler import ImbalancedDatasetSampler
    from params.aids_params import AidsAllExternalDataParams, AidsDatasetAllParams

    ext_train = ExternalData(AidsAllExternalDataParams())
    ds = BilinearDataset(AidsDatasetAllParams(), external_data=ext_train)
    # ds = BilinearDataset(AidsDatasetTestParams())
    dl = DataLoader(dataset=ds,
                    collate_fn=ds.collate_fn,
                    batch_size=64,
                    sampler=ImbalancedDatasetSampler(ds))
    p = []
    for i, (A, x, e, l) in enumerate(dl):
        print(i, A, x, e, l)
    e = 0
Esempio n. 9
0
                           config + ftrs

            res_list.append(config_line)

        with open(os.path.join("grid_results", file_name.strip(".txt") + "_analyzed.csv"), "wt") as f:
            writer = csv.writer(f)
            writer.writerows(res_list)


if __name__ == "__main__":
    # n = int(sys.argv[1])
    n = 0

    if n == 0:
        GridSearch(AidsDatasetAllParams, AidsLayeredBilinearModuleParams, AidsBilinearActivatorParams,
                   ExternalData(AidsAllExternalDataParams()), multi_class=False).go("_Aids")
    #
    # elif n == 1:
    #     GridSearch(WebDatasetAllParams, WebLayeredBilinearModuleParams, WebBilinearActivatorParams,
    #                ExternalData(WebAllExternalDataParams()), multi_class=True,
    #                layers=[[[None, 50], [50, 25]], [[None, 200], [200, 100], [100, 50]]]).go("_Web")
    #
    # elif n == 2:
    #     GridSearch(MutagenDatasetAllParams, MutagenLayeredBilinearModuleParams, MutagenBilinearActivatorParams,
    #                ExternalData(MutagenAllExternalDataParams()), multi_class=False).go("_Mutagen")
    #
    # elif n == 3:
    #     GridSearch(ProteinDatasetAllParams, ProteinLayeredBilinearModuleParams, ProteinBilinearActivatorParams,
    #                ExternalData(ProteinAllExternalDataParams()), multi_class=True,
    #                layers=[[[None, 25], [50, 25]], [[None, 100], [100, 50], [50, 25]]]).go("_Protein")
    #
Esempio n. 10
0
        with open(
                os.path.join("grid_results",
                             file_name.strip(".txt") + "_analyzed.csv"),
                "wt") as f:
            writer = csv.writer(f)
            writer.writerows(res_list)


if __name__ == "__main__":
    n = 8  # int(sys.argv[1])

    if n == 0:
        GridSearch(AidsDatasetAllParams,
                   AidsLayeredBilinearModuleParams,
                   AidsBilinearActivatorParams,
                   ExternalData(AidsAllExternalDataParams()),
                   multi_class=False).go("_Aids")

    elif n == 1:
        GridSearch(WebDatasetAllParams,
                   WebLayeredBilinearModuleParams,
                   WebBilinearActivatorParams,
                   ExternalData(WebAllExternalDataParams()),
                   multi_class=True).go("_Web")

    elif n == 2:
        GridSearch(MutagenDatasetAllParams,
                   MutagenLayeredBilinearModuleParams,
                   MutagenBilinearActivatorParams,
                   ExternalData(MutagenAllExternalDataParams()),
                   multi_class=False).go("_Mutagen")
Esempio n. 11
0
class AidsBilinearActivatorParams(BilinearActivatorParams):
    def __init__(self):
        super().__init__()
        self.DEV_SPLIT = 0.1153
        self.TEST_SPLIT = 0.538
        self.LOSS = functional.binary_cross_entropy_with_logits  # f.factor_loss  #
        self.BATCH_SIZE = 128
        self.EPOCHS = 25
        self.DATASET = "Aids"


if __name__ == '__main__':
    ALL = True
    if ALL == True:
        ext_train = ExternalData(AidsAllExternalDataParams())
        aids_train_ds = BilinearDataset(AidsDatasetAllParams(), external_data=ext_train)

        activator = BilinearActivator(LayeredBilinearModule(AidsLayeredBilinearModuleParams(
            ftr_len=aids_train_ds.len_features, embed_vocab_dim=ext_train.len_embed())),
                                      AidsBilinearActivatorParams(), aids_train_ds)
        activator.train()

    if ALL == False:
        ext_train = ExternalData(AidsTrainExternalDataParams())
        ext_dev = ExternalData(AidsDevExternalDataParams(), idx_to_symbol=ext_train.idx_to_symbol_dict)
        ext_test = ExternalData(AidsTestExternalDataParams(), idx_to_symbol=ext_train.idx_to_symbol_dict)

        aids_train_ds = BilinearDataset(AidsDatasetTrainParams(), external_data=ext_train)
        aids_dev_ds = BilinearDataset(AidsDatasetDevParams(), external_data=ext_dev)
        aids_test_ds = BilinearDataset(AidsDatasetTestParams(), external_data=ext_test)