Esempio n. 1
0
def get_loaders(config):
    """
    update config.class_number
    return loaders
    """
    dataset_config = edict()
    dataset_config.with_edge = False
    dataset_config.resize_shape = config.input_shape
    dataset_config = get_dataset_generalize_config(dataset_config,
                                                   config.semantic_dataset)

    config.class_number = len(dataset_config.foreground_class_ids) + 1
    normer = image_normalizations(ways='-1,1')
    batch_size = config.batch_size

    dataset_loaders = {}
    for split in ['train', 'val']:
        augmentations = Augmentations() if split == 'train' else None
        batch_size = config.batch_size if split == 'train' else 1
        drop_last = True if split == 'train' else False

        xxx_dataset = dataset_generalize(dataset_config,
                                         split=split,
                                         augmentations=augmentations,
                                         normalizations=normer)
        xxx_loader = TD.DataLoader(dataset=xxx_dataset,
                                   batch_size=batch_size,
                                   shuffle=True,
                                   drop_last=drop_last,
                                   num_workers=2)
        dataset_loaders[split] = xxx_loader

    return dataset_loaders, config
Esempio n. 2
0
def test_ignore_index():
    config = edict()
    config.root_path = '/media/sdb/CVDataset/ObjectSegmentation/archives/Cityscapes_archives'
    config.cityscapes_split = random.choice(['test', 'val', 'train'])
    config.print_path = True
    config.resize_shape = (224, 224)
    config.ignore_index = 255
    config.with_edge = False
    config = get_dataset_generalize_config(config, 'Cityscapes')

    fg_ids = [i for i in range(19)]

    augmentations = None
    dataset = dataset_generalize(config,
                                 split='train',
                                 augmentations=augmentations)
    loader = TD.DataLoader(dataset=dataset,
                           batch_size=2,
                           shuffle=True,
                           drop_last=False)
    for i, data in enumerate(loader):
        imgs, labels = data
        #        print(i,imgs.shape,labels.shape)
        labels_ids = np.unique(labels)
        print(labels_ids)
        for id in labels_ids:
            assert id == config.ignore_index or id in fg_ids, 'bad id=%d' % id


#        plt.imshow(imgs[0,0])
#        plt.show()
#        plt.imshow(labels[0])
#        plt.show()
        if i >= 10:
            break
Esempio n. 3
0
def get_loader(config):
    if config.dataset.norm_ways is None:
        normalizations = None
    else:
        normalizations = image_normalizations(config.dataset.norm_ways)

    if config.args.augmentation:
        augmentations = Augmentations(config)
    else:
        augmentations = None

    # must change batch size here!!!
    batch_size = config.args.batch_size

    train_dataset = dataset_generalize(
        config.dataset, split='train',
        augmentations=augmentations,
        normalizations=normalizations)
    train_loader = TD.DataLoader(
        dataset=train_dataset,
        batch_size=batch_size,
        shuffle=True,
        drop_last=True,
        num_workers=4)

    val_dataset = dataset_generalize(config.dataset,
                                     split='val',
                                     augmentations=None,
                                     normalizations=normalizations)
    val_loader = TD.DataLoader(
        dataset=val_dataset,
        batch_size=batch_size,
        shuffle=True,
        drop_last=False,
        num_workers=2)

    return train_loader, val_loader
Esempio n. 4
0
def test_network():
    class_number=19
    ignore_index=255
    net=simple_net(19)
    loss_fn=torch.nn.CrossEntropyLoss(ignore_index=ignore_index)
    optimizer = torch.optim.Adam([p for p in net.parameters() if p.requires_grad], lr = 0.0001)
    
    config=edict()
    config=get_dataset_generalize_config(config,'Cityscapes')
    config.resize_shape=(224,224)
    
    augmentations=None
    dataset=dataset_generalize(config,split='train',augmentations=augmentations)
    loader=TD.DataLoader(dataset=dataset,batch_size=2, shuffle=True,drop_last=False)
    
    device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    net.to(device)
    net.train()
    for i, (images, labels) in enumerate(loader):
        images = torch.autograd.Variable(images.to(device).float())
        labels = torch.autograd.Variable(labels.to(device).long())
        
        optimizer.zero_grad()
        outputs = net.forward(images)
#        print('images shape',images.shape)
#        print('output shape',outputs.shape)
#        print('labels shape',labels.shape)
        assert outputs.size()[2:] == labels.size()[1:]
        assert outputs.size()[1] == class_number
        loss = loss_fn(input=outputs, target=labels)
#                    loss=torch.nn.functional.cross_entropy(input=outputs,target=labels,ignore_index=255)

        loss.backward()
        optimizer.step()
        
        print('epoch=%s, loss=%.4f'%(i,loss.data))
Esempio n. 5
0
import matplotlib.pyplot as plt
import os
import cv2

config = edict()
config.root_path = '/media/sdb/CVDataset/ObjectSegmentation/archives/Cityscapes_archives'
#config.cityscapes_split=random.choice(['test','val','train'])
config.resize_shape = (224, 224)
config.print_path = False
config.with_path = False
config.with_edge = False
#config=get_dataset_generalize_config(config,'Cityscapes')
config = get_dataset_generalize_config(config, 'VOC2012')

split = 'test'
dataset = dataset_generalize(config, split=split)
loader = TD.DataLoader(dataset=dataset,
                       batch_size=2,
                       shuffle=False,
                       drop_last=False)

save_root = '/media/sdc/yzbx/benchmark_output/cityscapes'
os.makedirs(save_root, exist_ok=True)

for i, data in enumerate(loader):
    imgs = data['image']
    paths = data['filename']
    if split == 'test':
        print(paths[0])
        print(imgs[0].shape)
    else:
Esempio n. 6
0
    else:
        config.args.note = '_'.join([
            args.note, args.backbone_name,
            'bn%d' % args.batch_size, 'aug' + str(args.augmentation)[0]
        ])

    if args.train_split == 'train_extra':
        config.args.note += '_train_extra'

    if args.augmentation:
        augmentations = Augmentations(p=0.25)
    else:
        augmentations = None

    train_dataset = dataset_generalize(config.dataset,
                                       split=args.train_split,
                                       augmentations=augmentations)
    train_loader = TD.DataLoader(dataset=train_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=True,
                                 drop_last=True,
                                 num_workers=8)

    val_dataset = dataset_generalize(config.dataset,
                                     split='val',
                                     augmentations=augmentations)
    val_loader = TD.DataLoader(dataset=val_dataset,
                               batch_size=args.batch_size,
                               shuffle=True,
                               drop_last=False,
                               num_workers=8)
Esempio n. 7
0
    if config.dataset.norm_ways is None:
        normalizations = None
    else:
        normalizations = image_normalizations(config.dataset.norm_ways)

    if config.args.augmentation:
        augmentations = Augmentations(config)
    else:
        augmentations = None

    # must change batch size here!!!
    batch_size = args.batch_size

    train_dataset = dataset_generalize(config.dataset,
                                       split='train',
                                       augmentations=augmentations,
                                       normalizations=normalizations)
    train_loader = TD.DataLoader(dataset=train_dataset,
                                 batch_size=batch_size,
                                 shuffle=True,
                                 drop_last=True,
                                 num_workers=4)

    val_dataset = dataset_generalize(config.dataset,
                                     split='val',
                                     augmentations=None,
                                     normalizations=normalizations)
    val_loader = TD.DataLoader(dataset=val_dataset,
                               batch_size=batch_size,
                               shuffle=True,
                               drop_last=False,
Esempio n. 8
0
    def train(self, args=None, train_loader=None, val_loader=None):
        if args is None:
            args = self.config.training
        self.model.compile(loss='categorical_crossentropy',
                           optimizer='adam',
                           metrics=['acc'])

        if train_loader is None and val_loader is None:
            train_dataset = dataset_generalize(config.dataset,
                                               split='train',
                                               bchw=False)
            train_loader = TD.DataLoader(
                dataset=train_dataset,
                batch_size=self.config.dataset.batch_size,
                shuffle=True,
                drop_last=False)

            val_dataset = dataset_generalize(config.dataset,
                                             split='val',
                                             bchw=False)
            val_loader = TD.DataLoader(
                dataset=val_dataset,
                batch_size=self.config.dataset.batch_size,
                shuffle=True,
                drop_last=False)

        running_metrics = runningScore(self.class_number)

        time_str = time.strftime("%Y-%m-%d___%H-%M-%S", time.localtime())
        log_dir = os.path.join(args.log_dir, self.name, self.dataset_name,
                               args.note, time_str)
        checkpoint_path = os.path.join(
            log_dir, "{}_{}_best_model.pkl".format(self.name,
                                                   self.dataset_name))
        os.makedirs(log_dir, exist_ok=True)
        writer = SummaryWriter(log_dir=log_dir)
        best_iou = 0.6

        loaders = [train_loader, val_loader]
        loader_names = ['train', 'val']
        for epoch in range(args.n_epoch):
            for loader, loader_name in zip(loaders, loader_names):
                if loader is None:
                    continue

                if loader_name == 'val':
                    if epoch % 10 != 0:
                        continue

                print(loader_name + '.' * 50)
                n_step = len(loader)
                losses = []

                for i, (images, labels) in enumerate(loader):
                    x = images.data.numpy()
                    trues = labels.data.numpy()
                    y = to_categorical(trues, self.class_number)
                    if loader_name == 'train':
                        outputs = self.model.train_on_batch(x, y)
                    else:
                        outputs = self.model.test_on_batch(x, y)

                    predict_outputs = self.model.predict_on_batch(x)
                    predicts = np.argmax(predict_outputs, axis=-1)

                    losses.append(outputs[0])
                    if i % 5 == 0:
                        print(
                            "%s Epoch [%d/%d] Step [%d/%d]" %
                            (loader_name, epoch + 1, args.n_epoch, i, n_step))
                        for name, value in zip(self.model.metrics_names,
                                               outputs):
                            print(name, value)

                        running_metrics.update(trues, predicts)
                        score, class_iou = running_metrics.get_scores()
                        for k, v in score.items():
                            print(k, v)

                writer.add_scalar('%s/loss' % loader_name, np.mean(losses),
                                  epoch)
                writer.add_scalar('%s/acc' % loader_name,
                                  score['Overall Acc: \t'], epoch)
                writer.add_scalar('%s/iou' % loader_name,
                                  score['Mean IoU : \t'], epoch)

                running_metrics.reset()
                if loader_name == 'val':
                    if score['Mean IoU : \t'] >= best_iou:
                        best_iou = score['Mean IoU : \t']
                        self.model.save(checkpoint_path)

                    if epoch % (1 + args.n_epoch // 10) == 0:
                        print('write image to tensorboard' + '.' * 50)
                        idx = np.random.choice(predicts.shape[0])
                        writer.add_image('val/images', x[idx, :, :, :], epoch)
                        writer.add_image('val/predicts',
                                         torch.from_numpy(predicts[idx, :, :]),
                                         epoch)
                        writer.add_image('val/trues',
                                         torch.from_numpy(trues[idx, :, :]),
                                         epoch)
                        diff_img = (
                            predicts[idx, :, :] == trues[idx, :, :]).astype(
                                np.uint8)
                        writer.add_image('val/difference',
                                         torch.from_numpy(diff_img), epoch)

        writer.close()
def do_train_or_val(net, args=None, train_loader=None, val_loader=None):
    gpu_config = tf.ConfigProto()
    # config.gpu_options.per_process_gpu_memory_fraction = 0.3
    gpu_config.gpu_options.allow_growth = True
    session = tf.Session(config=gpu_config)
    KTF.set_session(session)
    session.run(tf.global_variables_initializer())

    if args is None:
        args = net.config.training
    metrics = net.get_metrics(net.class_number)
    opt = net.get_optimizer(args)
    net.model.compile(loss='categorical_crossentropy',
                      optimizer=opt,
                      metrics=metrics)

    if train_loader is None and val_loader is None:
        train_dataset = dataset_generalize(net.config.dataset,
                                           split='train',
                                           bchw=False)
        train_loader = TD.DataLoader(dataset=train_dataset,
                                     batch_size=net.config.dataset.batch_size,
                                     shuffle=True,
                                     drop_last=False)

        val_dataset = dataset_generalize(net.config.dataset,
                                         split='val',
                                         bchw=False)
        val_loader = TD.DataLoader(dataset=val_dataset,
                                   batch_size=net.config.dataset.batch_size,
                                   shuffle=True,
                                   drop_last=False)

    running_metrics = runningScore(net.class_number)

    time_str = time.strftime("%Y-%m-%d___%H-%M-%S", time.localtime())
    log_dir = os.path.join(args.log_dir, net.name, args.dataset_name,
                           args.note, time_str)
    checkpoint_path = os.path.join(
        log_dir, "{}_{}_best_model.pkl".format(net.name, args.dataset_name))
    os.makedirs(log_dir, exist_ok=True)
    writer = SummaryWriter(log_dir=log_dir)
    config = net.config
    config_str = json.dumps(config, indent=2, sort_keys=True).replace(
        '\n', '\n\n').replace('  ', '\t')
    writer.add_text(tag='config', text_string=config_str)

    # write config to config.txt
    config_path = os.path.join(log_dir, 'config.txt')
    config_file = open(config_path, 'w')
    json.dump(config, config_file, sort_keys=True)
    config_file.close()

    best_iou = 0.6

    loaders = [train_loader, val_loader]
    loader_names = ['train', 'val']
    for epoch in range(args.n_epoch):
        for loader, loader_name in zip(loaders, loader_names):
            if loader is None:
                continue

            if loader_name == 'val':
                if epoch % 5 != 0:
                    continue

            print(loader_name + '.' * 50)
            n_step = len(loader)
            losses = []

            for i, (images, labels) in enumerate(loader):
                x = images.data.numpy()
                trues = labels.data.numpy()
                y = to_categorical(trues, net.class_number)
                if loader_name == 'train':
                    outputs = net.model.train_on_batch(x, y)
                else:
                    outputs = net.model.test_on_batch(x, y)

                predict_outputs = net.model.predict_on_batch(x)
                predicts = np.argmax(predict_outputs, axis=-1)

                losses.append(outputs[0])
                if epoch % 5 == 0:
                    print('keras metrics as follow:', '*' * 30)
                    print("%s Epoch [%d/%d] Step [%d/%d]" %
                          (loader_name, epoch + 1, args.n_epoch, i, n_step))
                    for name, value in zip(net.model.metrics_names, outputs):
                        print(name, value)

                    print('running metrics as follow:', '*' * 30)
                    running_metrics.update(trues, predicts)
                    score, class_iou = running_metrics.get_scores()
                    for k, v in score.items():
                        print(k, v)

            if epoch % 5 == 0:
                writer.add_scalar('%s/loss' % loader_name, np.mean(losses),
                                  epoch)
                writer.add_scalar('%s/acc' % loader_name,
                                  score['Overall Acc: \t'], epoch)
                writer.add_scalar('%s/iou' % loader_name,
                                  score['Mean IoU : \t'], epoch)

            running_metrics.reset()
            if loader_name == 'val':
                if score['Mean IoU : \t'] >= best_iou:
                    best_iou = score['Mean IoU : \t']
                    net.model.save(checkpoint_path)


#                if epoch % (1+args.n_epoch//10) == 0:
#                    print('write image to tensorboard'+'.'*50)
#                    idx=np.random.choice(predicts.shape[0])
#                    writer.add_image('val/images',x[idx,:,:,:],epoch)
#                    writer.add_image('val/predicts', torch.from_numpy(predicts[idx,:,:]), epoch)
#                    writer.add_image('val/trues', torch.from_numpy(trues[idx,:,:]), epoch)
#                    diff_img=(predicts[idx,:,:]==trues[idx,:,:]).astype(np.uint8)
#                    writer.add_image('val/difference', torch.from_numpy(diff_img), epoch)

    print('best iou is', best_iou)
    writer.close()