def kriging_plot(): #date = str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M")) data = dataset.data() data.sort_values(by=['component']) #data.set_index(keys=['component'], drop=False,inplace=True) names = data['component'].unique().tolist() for component in names: compdata = data.loc[data.component == component] compdata = compdata.reset_index(drop=True) if (4 > len(compdata.index)): continue krige_data = krige_task(compdata[[ 'latitude', 'longitude', 'value', 'unit', 'component', 'x', 'y' ]]) #define documentDataFrame(compdata, columns=['latitude','longitude', 'value', 'unit', 'component'] ) document = { 'date': str(compdata['toTime'].iloc[0]), 'component': str(compdata['component'].iloc[0]), 'data': data.loc[data.component == component].to_json(orient='index'), 'krige_data': simplejson.dumps(krige_data.tolist()) } # 'data' : compdata.to_json(orient='index'), #connect to db client = Cloudant(user, password, url=url, connect=True) db = client.create_database(db_name, throw_on_exists=False) #store document document = db.create_document(document) #disconnect from db client.disconnect() return data.to_html()
Mukherjee emailed me in 2017, into an sql server database. ''' filename_input_csv = "C:/users/podengo/git/citrus/data/am4ir/FloridaQatar_AM4IR_pilot_filtered.txt" dsr = Dataset(dbms='csv', delimiter='\t', name=filename_input_csv, open_mode="r", encoding='utf-8') row_set = dsr.dict_reader() #Print field/column/header values print("Input field names={}".format(row_set.fieldnames)) #for i0,row in enumerate(row_set): # create pyodbc connection for the table to which we will write # create dataset writer for input dataset 'a' for am4ir in year 2017 dsw = Dataset(dbms="pyodbc", open_mode="w", encoding='utf=8', server=".\SQLEXPRESS", db="silodb", table='am4ir_2017a') data(dsr=dsr, dsw=dsw, verbosity=1) #dw.writeheader()
from utils import * from model import MyModel import datetime os.environ["CUDA_VISIBLE_DEVICES"] = "0,7,6,5,4,3,2,1" if __name__ == '__main__': # parameters config = read_config() scale = int(config['dataset'][-1:]) checkpoint_path = 'checkpoint/' + config['dataset'][-10:] + '/model' log_dir = "logs/fit/" + config['dataset'] + '-' + datetime.datetime.now( ).strftime("%Y%m%d-%H%M%S") # dataset trainset, valset, testset = data(name=config['dataset']) # model model = MyModel(blocks=config['blocks'], channel=config['channel'], scale=scale) # lr ExponentialDecay lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( config['learning_rate'], decay_steps=config['decay_steps'], decay_rate=config['decay_rate']) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=lr_schedule), loss=Loss(),
from dataset import data from sklearn import linear_model, datasets import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error, r2_score import numpy as np train_x, train_y, test_x, test_y = data() reg = linear_model.LinearRegression() reg.fit(train_x, train_y) pred = reg.predict(test_x) print(mean_squared_error(pred, test_y), r2_score(pred, test_y)) plt.scatter(test_x, test_y) plt.plot(test_x, pred) plt.show()
batch_size=30 epochs=30 filename1='/home/orion/Downloads/facial-landmarks/X_TRAIN/' filename2='/home/orion/Downloads/facial-landmarks/Y_TRAIN/' filename3='/home/orion/Downloads/facial-landmarks/X_TEST/' filename4='/home/orion/Downloads/facial-landmarks/Y_TEST/' files1=os.listdir(filename1) files2=os.listdir(filename2) files3=os.listdir(filename3) files4=os.listdir(filename4) X_train=data(filename1,files1) Y_train=data(filename2,files2) X_test=data(filename3,files3) Y_test=data(filename4,files4) data1=im(X_train) data2=im(Y_train) data3=im(X_test) data4=im(Y_test) x_train=np.asarray(data1) y_train=np.asarray(data2) x_test=np.asarray(data3) y_test=np.asarray(data4)
latest_checkpoint = tf.train.latest_checkpoint(weights_dir) model.load_weights(latest_checkpoint) image = tf.keras.Input(shape=[None, None, 3], name="image") predictions = model(image, training=False) detections = DecodePredictions(confidence_threshold=0.5)(image, predictions) inference_model = tf.keras.Model(inputs=image, outputs=detections) def prepare_image(image): image, _, ratio = resize_and_pad_image(image, jitter=None) image = tf.keras.applications.resnet.preprocess_input(image) return tf.expand_dims(image, axis=0), ratio _, _, dataset_info = data() val_dataset = tfds.load("coco/2017", split="validation", data_dir="data") int2str = dataset_info.features["objects"]["label"].int2str for sample in val_dataset.take(2): image = tf.cast(sample["image"], dtype=tf.float32) input_image, ratio = prepare_image(image) detections = inference_model.predict(input_image) num_detections = detections.valid_detections[0] class_names = [ int2str(int(x)) for x in detections.nmsed_classes[0][:num_detections] ] visualize_detections( image, detections.nmsed_boxes[0][:num_detections] / ratio,
test_loss += custom_loss(output, target, vol=True).data[0] test_loss /= len(dtloader) # loss function already averages over batch size print('Test set: Average loss: {:.4f}'.format(test_loss)) return test_loss ################################################################################# ######## Main code ####################################################### ################################################################################# ###Load the dataset opt.nc = 1 import dataset as nuclei dataset = nuclei.data(opt.dataroot_images, opt.dataroot_masks, image_size = opt.imageSize, nb_images = opt.n_train, nb_crops = opt.n_crops) dataset.normalize() dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, **kwargs) testset = nuclei.data(opt.dataroot_images, opt.dataroot_masks, list_of_data = dataset.remaining_data, nb_images = opt.n_train, nb_crops = 1, image_size = opt.imageSize,) testset.normalize() testloader = torch.utils.data.DataLoader(testset, batch_size=opt.batchSize, shuffle=True, **kwargs) ################################################################################ ### Create/Read network and initialize if not exists(opt.experiment): makedirs(opt.experiment) ngpu = int(opt.ngpu)
from __future__ import division import os import cv2 import dlib from eye import Eye from calibration import Calibration import pandas as pd import xlwt from dataset import data datalist = data() class GazeTracking(object): """ This class tracks the user's gaze. It provides useful information like the position of the eyes and pupils and allows to know if the eyes are open or closed """ def __init__(self): self.frame = None self.eye_left = None self.eye_right = None self.calibration = Calibration() # _face_detector is used to detect faces self._face_detector = dlib.get_frontal_face_detector() # _predictor is used to get facial landmarks of a given face cwd = os.path.abspath(os.path.dirname(__file__)) model_path = os.path.abspath(
tf.keras.callbacks.ModelCheckpoint( filepath=os.path.join(model_dir, "weights" + "_epoch_{epoch}"), monitor="loss", save_best_only=True, save_weights_only=True, verbose=1, ) ] # Uncomment the following lines, when training on full dataset # train_steps_per_epoch = dataset_info.splits["train"].num_examples // batch_size # val_steps_per_epoch = \ # dataset_info.splits["validation"].num_examples // batch_size # train_steps = 4 * 100000 # epochs = train_steps // train_steps_per_epoch train_dataset, val_dataset, _ = data() epochs = 1 # Running 100 training and 50 validation steps, # remove `.take` when training on the full dataset model = make_model() model.fit( train_dataset.take(100), validation_data=val_dataset.take(50), epochs=epochs, callbacks=callbacks_list, verbose=1, )
batch_size = 10 max_train_data_per_mat = 30 downsample = 2 img_w = 224 img_h = 224 total_f_num = 12416 zo = zoomout_vgg16.Zoomout_Vgg16("zoomout/vgg16.npy", weight=img_w, height=img_h, downsample=downsample) sess = tf.Session() sess.run(tf.global_variables_initializer()) data = dataset.data(main_path="data", sp_num=sp_num, weight=img_w, height=img_h, downsample=downsample) mat_data = {"train_x": [], "train_y": [], "train_slic": []} start_time = time.time() # train data overflow = False s = 0 index = 0 while overflow is False: print("train %d" % s) print("time:%d" % (time.time() - start_time)) s += 1 train_data, overflow = data.next_batch(batch=batch_size, kind="train")