def load_test_data(): images = np.zeros( shape=[_num_images_test, image_size, image_size, num_channels], dtype=float) cls = np.zeros(shape=[_num_images_test], dtype=int) conn = sqlite3.connect(data_path + 'aflw.sqlite') c = conn.cursor() result = c.execute(query_string) i = 0 for row in result: if i < _num_images_train: i += 1 elif os.path.isfile(data_path + str(row[0])) and (i - _num_images_train < _num_images_test): msg = "\r- Processing image: {0:>6} / {1}".format( i - _num_images_train + 1, _num_images_test) sys.stdout.write(msg) sys.stdout.flush() image, cls[i - _num_images_train] = load_images_and_cls( row, file_path_cache_test) if image is not None: image_h, image_w, dump = image.shape images[i - _num_images_train, 0:image_h, 0:image_w] = image[0:image_h, 0:image_w] i += 1 print() return images, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def load_test_data(): # Load all the test-data for the CIFAR-10 data-set. # Returns the images, class-numbers and one-hot encoded class-labels. images, cls = _load_data(filename='test_batch') return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def load_training_data(): # Pre-allocate the arrays for the images and class-numbers for efficiency. # images = np.zeros(shape=[_num_images_train, img_width, img_height, num_channels], dtype=float) # cls = np.zeros(shape=[_num_images_train], dtype=int) images = [] cls = [] a = TRAIN_DICTIONARY.keys() for i in range(0, _num_images_train): f = os.listdir(os.path.join(data_path, 'training'))[i] if f in a: img = downSampling(os.path.join(data_path, 'training', f), 350, 230) arr = sliding(img) # print(len(arr)) # arr = np.array(img) # images[i] = arr # cls[i] = TRAIN_DICTIONARY[f] for x in arr: images.append(x) cls.append(TRAIN_DICTIONARY[f]) images = np.array(images) cls = np.array(cls, dtype=int) print(cls) return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def load_test_data(): images = np.zeros( shape=[_num_images_test, image_size, image_size, num_channels], dtype=float) cls = np.zeros( shape=[_num_images_test], dtype=int) with open(data_path + 'fer2013.csv', 'rt') as csvfile: datareader = csv.reader(csvfile, delimiter =',') i = 0 for row in datareader: if row[2] == 'PrivateTest': msg = "\r- Processing image: {0:>6} / {1}".format(i+1, _num_images_test) sys.stdout.write(msg) sys.stdout.flush() images[i], cls[i] = load_images_and_cls(row, file_path_cache_test) i += 1 if i == _num_images_train: break print() return images, one_hot_encoded( class_numbers=cls, num_classes=num_classes)
def load_training_data(): """ Load all the training-data for the CIFAR-10 data-set. The data-set is split into 5 data-files which are merged here. Returns the images, class-numbers and one-hot encoded class-labels. """ # Pre-allocate the arrays for the images and class-numbers for efficiency. images = np.zeros(shape=[_num_images_train, img_size, img_size, num_channels], dtype=float) cls = np.zeros(shape=[_num_images_train], dtype=int) # Begin-index for the current batch. begin = 0 # For each data-file. for i in range(_num_files_train): # Load the images and class-numbers from the data-file. images_batch, cls_batch = _load_data(filename="data_batch_" + str(i + 1)) # Number of images in this batch. num_images = len(images_batch) # End-index for the current batch. end = begin + num_images # Store the images into the array. images[begin:end, :] = images_batch # Store the class-numbers into the array. cls[begin:end] = cls_batch # The begin-index for the next batch is the current end-index. begin = end return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def __init__(self, data_dir="../../data/MNIST/", log_dir=None): """ Load the MNIST data-set. Automatically downloads the files if they do not already exist locally. :param data_dir: Base-directory for downloading files. """ # Copy args to self. self.data_dir = data_dir # Number of images in each sub-set. self.num_train = 55000 self.num_val = 5000 self.num_test = 10000 # Download / load the training-set. x_train = self._load_images(filename=filename_x_train) y_train_cls = self._load_cls(filename=filename_y_train) # Split the training-set into train / validation. # Pixel-values are converted from ints between 0 and 255 # to floats between 0.0 and 1.0. self.x_train = x_train[0:self.num_train] / 255.0 self.x_val = x_train[self.num_train:] / 255.0 self.y_train_cls = y_train_cls[0:self.num_train] self.y_val_cls = y_train_cls[self.num_train:] # Download / load the test-set. self.x_test = self._load_images(filename=filename_x_test) / 255.0 self.y_test_cls = self._load_cls(filename=filename_y_test) # Convert the class-numbers from bytes to ints as that is needed # some places in TensorFlow. self.y_train_cls = self.y_train_cls.astype(np.int) self.y_val_cls = self.y_val_cls.astype(np.int) self.y_test_cls = self.y_test_cls.astype(np.int) # Convert the integer class-numbers into one-hot encoded arrays. self.y_train = one_hot_encoded(class_numbers=self.y_train_cls, num_classes=self.num_classes) self.y_val = one_hot_encoded(class_numbers=self.y_val_cls, num_classes=self.num_classes) self.y_test = one_hot_encoded(class_numbers=self.y_test_cls, num_classes=self.num_classes) init_logger(log_dir)
def __init__(self, data_dir="data/MNIST/"): """ Load the MNIST data-set. Automatically downloads the files if they do not already exist locally. :param data_dir: Base-directory for downloading files. """ # Copy args to self. self.data_dir = data_dir # Number of images in each sub-set. self.num_train = 55000 self.num_val = 5000 self.num_test = 10000 # Download / load the training-set. x_train = self._load_images(filename=filename_x_train) y_train_cls = self._load_cls(filename=filename_y_train) # Split the training-set into train / validation. # Pixel-values are converted from ints between 0 and 255 # to floats between 0.0 and 1.0. self.x_train = x_train[0:self.num_train] / 255.0 self.x_val = x_train[self.num_train:] / 255.0 self.y_train_cls = y_train_cls[0:self.num_train] self.y_val_cls = y_train_cls[self.num_train:] # Download / load the test-set. self.x_test = self._load_images(filename=filename_x_test) / 255.0 self.y_test_cls = self._load_cls(filename=filename_y_test) # Convert the class-numbers from bytes to ints as that is needed # some places in TensorFlow. self.y_train_cls = self.y_train_cls.astype(np.int) self.y_val_cls = self.y_val_cls.astype(np.int) self.y_test_cls = self.y_test_cls.astype(np.int) # Convert the integer class-numbers into one-hot encoded arrays. self.y_train = one_hot_encoded(class_numbers=self.y_train_cls, num_classes=self.num_classes) self.y_val = one_hot_encoded(class_numbers=self.y_val_cls, num_classes=self.num_classes) self.y_test = one_hot_encoded(class_numbers=self.y_test_cls, num_classes=self.num_classes)
def load_test_data(): """ Load all the test-data for the CIFAR-10 data-set. Returns the images, class-numbers and one-hot encoded class-labels. """ images, cls = _load_data(filename="test_batch", train_test = False) return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def load_test_data(): """ Load all the test-data for the CIFAR-10 data-set. Returns the images, class-numbers and one-hot encoded class-labels. """ images, cls = _load_data(filename="test_batch") return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def load_test_data(): """ CIFAR-10 데이터셋에 대한 테스트셋을 불러온다. 이미지, 클래스 숫자, one-hot 인코딩된 클래스 라벨을 반환한다. """ images, cls = _load_data(filename="test_batch") return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def _load_test_data(self): """ Load all the test-data for the CIFAR-10 data-set. Returns the images, class-numbers and one-hot encoded class-labels. """ self.x_test, self.x_test_cls = self._load_data(filename="test_batch") # self.x_test_ori = self.x_test.copy() self.y_test = one_hot_encoded(class_numbers=self.x_test_cls, num_classes=self.num_classes) self.num_test = len(self.x_test)
def load_test_data(data_path1, data_path): """ Returns the images, class-numbers and one-hot encoded class-labels. """ images, cls = _load_data(filename="test_batch.txt", data_path1=data_path1, data_path=data_path) ###.bin return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def _load_data(self, filename): """ Load a pickled data-file from the data-set and return the converted images (see above) and the class-number for each image. """ # Load the pickled data-file. data = self._unpickle(filename) # print(len(data.traindata)) images = self._convert_images(data.traindata) return images, data.classes, one_hot_encoded( class_numbers=data.classes, num_classes=self.num_classes)
def _load_training_data(self): """ Load all the training-data for the CIFAR-10 data-set. The data-set is split into 5 data-files which are merged here. Returns the images, class-numbers and one-hot encoded class-labels. """ # Pre-allocate the arrays for the images and class-numbers for efficiency. self.images_train = np.zeros(shape=[ self._num_images_train, self.img_size, self.img_size, self.num_channels ], dtype=float) self.cls_train = np.zeros(shape=[self._num_images_train], dtype=int) # Begin-index for the current batch. begin = 0 # For each data-file. for i in range(self._num_files_train): # Load the images and class-numbers from the data-file. images_batch, cls_batch = self._load_data(filename="data_batch_" + str(i + 1)) # Number of images in this batch. num_images = len(images_batch) # End-index for the current batch. end = begin + num_images # Store the images into the array. self.images_train[begin:end, :] = images_batch # Store the class-numbers into the array. self.cls_train[begin:end] = cls_batch # The begin-index for the next batch is the current end-index. begin = end self.labels_train = one_hot_encoded(class_numbers=self.cls_train, num_classes=self.num_classes) # Split into validation data self.num_val = int(round(self._num_images_train * 0.2)) self.x_val = self.images_train[-self.num_val:] self.y_val_cls = self.cls_train[-self.num_val:] self.y_val = self.labels_train[-self.num_val:] self.num_train = self._num_images_train - self.num_val self.x_train = self.images_train[:self._num_images_train] self.y_train_cls = self.cls_train[:self._num_images_train] self.y_train = self.labels_train[:self._num_images_train]
def load_testing_data(): images = np.zeros( shape=[_num_images_test, img_width, img_height, num_channels], dtype=float) cls = np.zeros(shape=[_num_images_test], dtype=int) a = TEST_DICTIONARY.keys() for i in range(0, _num_images_test): f = os.listdir(os.path.join(data_path, 'testing'))[i] if f in a: img = Image.open(os.path.join(data_path, 'testing', f)) arr = np.array(img) images[i] = arr cls[i] = TEST_DICTIONARY[f] return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def load_validation_data(): images = np.zeros( shape=[_num_images_validation, img_width, img_height, num_channels], dtype=float) cls = np.zeros(shape=[_num_images_validation], dtype=int) a = VALIDATION_DICTIONARY.keys() for i in range(0, _num_images_validation): f = os.listdir(os.path.join(data_path, 'validation'))[i] if f in a: img = Image.open(os.path.join(data_path, 'validation', f)) arr = np.array(img) if (len(arr[0]) == 460): images[i] = arr cls[i] = VALIDATION_DICTIONARY[f] return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def load_test_data(strNum): """ Load all the test-data for the CIFAR-10 data-set. Returns the images, class-numbers and one-hot encoded class-labels. """ filetype = ["_img", "_cls"] suffixs = ".pkl" images, cls = _load_data(filename="data_batch_" + str(strNum), fileTypes=filetype, suffix=suffixs) return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def load_training_data(): """ Load all the training-data for the CIFAR-10 data-set. CIFAR-10 데이터셋에 대한 학습데이터셋을 불러온다. 5개의 파일 속에 나뉘어진 이 데이터셋은 여기서 병합된다 이미지, 클래스 숫자, one-hot 인코딩된 클래스 라벨을 반환한다. """ # 효율성을 위해 이미지와 클래스 숫자에 대한 배열을 미리 할당한다 images = np.zeros(shape=[_num_images_train, img_size, img_size, num_channels], dtype=float) cls = np.zeros(shape=[_num_images_train], dtype=int) # 현재 배치에 대한 시작 인덱스 begin = 0 # 각 데이터 파일에 대해 반복 for i in range(_num_files_train): # 데이터파일로부터 클래스 숫자와 이미지를 불러온다 images_batch, cls_batch = _load_data(filename="data_batch_" + str(i + 1)) # 이 배치 안에 이미지의 수 num_images = len(images_batch) # 현재 배치에 대한 끝 인덱스 end = begin + num_images # 배열속에 이미지를 저장한다 images[begin:end, :] = images_batch # 배열속에 클래스 숫자를 저장한다 cls[begin:end] = cls_batch # 다음 배치를 위해 시작인덱스는 현재의 끝 인덱스이다. begin = end return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def load_data(filename): images, cls = _load_data(filename=filename) return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def load_test_data(): images, cls = _load_data(filename="test_batch") return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)