def prepare_dataset(args, category=None):
    if args.mode == 'train':
        train_csv = re.sub('\.csv$', '', args.in_train_csv)
        dataset_train = KaggleDataset(train_csv,
                                      transform=Compose(),
                                      img_folder=args.in_train_img,
                                      category=category,
                                      resize_scale=[128, 128])
        return dataset_train

    if args.mode == 'valid':
        valid_csv = re.sub('\.csv$', '', args.in_valid_csv)
        dataset_valid = KaggleDataset(valid_csv,
                                      transform=Compose(),
                                      img_folder=args.in_valid_img,
                                      category=category,
                                      resize_scale=[128, 128])
        return dataset_valid

    if args.mode == 'test':
        test_csv = re.sub('\.csv$', '', args.in_test_csv)
        dataset_test = KaggleDataset(test_csv,
                                     transform=Compose(),
                                     img_folder=args.in_test_img,
                                     category=category,
                                     resize_scale=[128, 128])
        return dataset_test
Esempio n. 2
0
def main(ckpt, img_dir, save_dir):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # load one or more checkpoint
    models = []
    for fn in ckpt or [None]:
        # load model
        model = load_ckpt(filepath=fn)
        if not model:
            print("Aborted: checkpoint {} not found!".format(fn))
            return
        # Sets the model in evaluation mode.
        model.eval()
        # put model to GPU
        # Note: Comment out DataParallel due to
        #       (1) we won't need it in our inference scenario
        #       (2) it will change model's class name to 'dataparallel'
        # if torch.cuda.device_count() > 1:
        #     print("Let's use", torch.cuda.device_count(), "GPUs!")
        #     model = nn.DataParallel(model)
        model = model.to(device)
        # append to model list
        models.append(model)

    resize = not config['valid'].getboolean('pred_orig_size')
    compose = Compose(augment=False, resize=resize)
    # decide which dataset to pick sample
    dataset = AgTestDataset(img_dir, transform=compose)

    # iterate dataset and inference each sample
    ious = []
    writer = csvfile = None
    for data in tqdm(dataset):
        with torch.no_grad():
            inference(data, models, resize, save_dir)
Esempio n. 3
0
def main(tocsv=False, save=False, mask=False, valid_train=False, toiou=False):
    model_name = config['param']['model']
    resize = not config['valid'].getboolean('pred_orig_size')

    if model_name == 'unet_vgg16':
        model = UNetVgg16(3, 1, fixed_vgg=True)
    elif model_name == 'dcan':
        model = DCAN(3, 1)
    elif model_name == 'caunet':
        model = CAUNet()
    elif model_name == 'camunet':
        model = CAMUNet()
    else:
        model = UNet()

    if torch.cuda.is_available():
        model = model.cuda()
        # model = torch.nn.DataParallel(model).cuda()

    # Sets the model in evaluation mode.
    model.eval()

    epoch = load_ckpt(model)
    if epoch == 0:
        print("Aborted: checkpoint not found!")
        return

    # prepare dataset
    compose = Compose(augment=False, resize=resize)
    data_dir = 'data/stage1_train' if valid_train else 'data/stage1_test'
    dataset = KaggleDataset(data_dir, transform=compose)
    iter = predict(model, dataset, compose, resize)

    if tocsv:
        with open('result.csv', 'w') as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow(['ImageId', 'EncodedPixels'])
            for uid, _, y, y_c, y_m, _, _, _, _ in iter:
                for rle in prob_to_rles(y, y_c, y_m):
                    writer.writerow([uid, ' '.join([str(i) for i in rle])])
    elif toiou and valid_train:
        with open('iou.csv', 'w') as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow(['ImageId', 'IoU'])
            for uid, _, y, y_c, y_m, gt, _, _, _ in tqdm(iter):
                iou = get_iou(y, y_c, y_m, gt)
                writer.writerow([uid, iou])
    else:
        for uid, x, y, y_c, y_m, gt, gt_s, gt_c, gt_m in tqdm(iter):
            if valid_train:
                show_groundtruth(uid, x, y, y_c, y_m, gt, gt_s, gt_c, gt_m,
                                 save)
            elif mask:
                save_mask(uid, y, y_c, y_m)
            else:
                show(uid, x, y, y_c, y_m, save)
Esempio n. 4
0
# t = [ToTensor()]
# train_data = DatasetSyn(args.train_data, "train", transform=Compose(t), sample_shape=args.sample_shape)
# train_data.reset_Sample()
# train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True,
#                           num_workers=args.num_workers)

# eval_data = DatasetSyn(args.eval_data, "eval", transform=Compose(t), sample_shape=args.sample_shape)
# eval_data.reset_Sample()
# eval_loader = DataLoader(eval_data, batch_size=args.batch_size, shuffle=True,
#                           num_workers=args.num_workers)

t = [ToTensor()]
train_data = DatasetReal(REAL_DATA_PATH,
                         mode="train",
                         transform=Compose(t),
                         sample_shape=args.sample_shape)
train_data.reset_Sample()
train_loader = DataLoader(train_data,
                          batch_size=args.batch_size,
                          shuffle=True,
                          num_workers=args.num_workers)

eval_data = DatasetReal(REAL_DATA_PATH,
                        mode="eval",
                        transform=Compose(t),
                        sample_shape=args.sample_shape)
eval_data.reset_Sample()
eval_loader = DataLoader(eval_data, batch_size=1, shuffle=True, num_workers=1)

# t = [ToTensor()]
Esempio n. 5
0
train_tfLogger = TFLogger(osp.join(args.logs_dir, 'train'))
eval_tfLogger = TFLogger(osp.join(args.logs_dir, 'eval'))


# t = [ToTensor()]
# train_data = DatasetTrain(args.train_data, transform=Compose(t), sample_shape=args.sample_shape)
# # train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True,
# #                           num_workers=args.num_workers)

# eval_data = DatasetEvaluate(args.eval_data, transform=Compose(t), sample_shape=args.sample_shape)
# eval_data.reset_Sample()
# eval_loader = DataLoader(eval_data, batch_size=args.batch_size, shuffle=True,
#                           num_workers=args.num_workers)

t = [ToTensor()]
train_data = DatasetReal(REAL_DATA_PATH, mode="train", transform=Compose(t), sample_shape=args.sample_shape)
# train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True,
#                           num_workers=args.num_workers)
train_data.reset_Sample()
train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)

eval_data = DatasetReal(REAL_DATA_PATH, mode="eval", transform=Compose(t), sample_shape=args.sample_shape)
eval_data.reset_Sample()
eval_loader = DataLoader(eval_data, batch_size=args.batch_size, shuffle=True,
                          num_workers=args.num_workers)


for epoch in range(args.start_epoch, 150):
    scheduler.step()
    lr = scheduler.get_lr()[0]
    
Esempio n. 6
0
def main(resume=True, n_epoch=None, learn_rate=None):
    model_name = config['param']['model']
    if learn_rate is None:
        learn_rate = config['param'].getfloat('learn_rate')
    width = config.getint(model_name, 'width')
    weight_map = config['param'].getboolean('weight_map')
    c = config['train']
    log_name = c.get('log_name')
    n_batch = c.getint('n_batch')
    n_worker = c.getint('n_worker')
    n_cv_epoch = c.getint('n_cv_epoch')
    if n_epoch is None:
        n_epoch = c.getint('n_epoch')
    balance_group = c.getboolean('balance_group')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model = build_model(model_name)
    model = model.to(device)

    # define optimizer
    optimizer = torch.optim.Adam(
        filter(lambda p: p.requires_grad, model.parameters()),
        lr=args.learn_rate,
        weight_decay=1e-6
        )

    # dataloader workers are forked process thus we need a IPC manager to keep cache in same memory space
    manager = Manager()
    cache = manager.dict()
    compose = Compose()
    # prepare dataset
    if os.path.exists('data/valid'):
        # advance mode: use valid folder as CV
        train_dataset = KaggleDataset('data/train', transform=compose, cache=cache)
        valid_dataset = KaggleDataset('data/valid', transform=compose, cache=cache)
    else:
        # auto mode: split part of train dataset as CV
        train_dataset = KaggleDataset('data/train', transform=compose, cache=cache, use_filter=True)
        train_dataset, valid_dataset = train_dataset.split()
    # decide whether to balance training set
    if balance_group:
        weights, ratio = train_dataset.class_weight()
        # Len of weights is number of original epoch samples. 
        # After oversample balance, majority class will be under-sampled (least sampled)
        # Multipling raito is to gain chance for each sample to be visited at least once in each epoch 
        sampler = WeightedRandomSampler(weights, int(len(weights) * ratio))
    else:
        sampler = RandomSampler(train_dataset)
    # data loader
    train_loader = DataLoader(
        train_dataset,
        sampler=sampler,
        batch_size=n_batch,
        num_workers=n_worker,
        pin_memory=torch.cuda.is_available())
    valid_loader = DataLoader(
        valid_dataset,
        shuffle=False,
        batch_size=n_batch,
        num_workers=n_worker)

    # resume checkpoint
    start_epoch = iou_tr = iou_cv = 0
    if resume:
        start_epoch = load_ckpt(model, optimizer)
    if start_epoch == 0:
        print('Grand new training ...')

    # put model to GPU
    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = nn.DataParallel(model)

    # decide log directory name
    log_dir = os.path.join(
        'logs', log_name, '{}-{}'.format(model_name, width),
        'ep_{},{}-lr_{}'.format(
            start_epoch,
            n_epoch + start_epoch,
            learn_rate,
        )
    )

    with SummaryWriter(log_dir) as writer:
        if start_epoch == 0 and False:
            # dump graph only for very first training, disable by default
            dump_graph(model, writer, n_batch, width)
        print('Training started...')
        for epoch in range(start_epoch + 1, n_epoch + start_epoch + 1): # 1 base
            iou_tr = train(train_loader, model, optimizer, epoch, writer)
            if len(valid_dataset) > 0 and epoch % n_cv_epoch == 0:
                with torch.no_grad():
                    iou_cv = valid(valid_loader, model, epoch, writer, len(train_loader))
            save_ckpt(model, optimizer, epoch, iou_tr, iou_cv)
        print('Training finished...')
Esempio n. 7
0
# FOV_SHAPE = [41, 41, 41]
# FOV_SHAPE = [57, 57, 57]
FOV_SHAPE = [64, 64, 64]

device = torch.device("cuda")
path = osp.join(working_dir, OUTPUT_DIR)
mkdir_if_not_exist(path)

# model = SegFFNNet(in_dims=1)
model = SegFFNNet(in_dims=1, ins_dims=5)
model = model.to(device)

# infer = Inference(model, MODEL_PATH, PATCH_SHAPE, FOV_SHAPE, path)
infer = DF_Inference(model, MODEL_PATH, PATCH_SHAPE, FOV_SHAPE, path)

t = [ToTensor()]
# dataset = DatasetTest(TEST_DATA_PATH, transform=Compose(t))
dataset = DatasetRealTest(REAL_TEST_DATA_PATH, transform=Compose(t))

for i in range(1):
    img, gt = dataset[i]
    name = dataset.datanames[i]
    print(img.shape, gt.shape)

    print("Processing {} ...".format(name))
#     ins_mask = infer.forward(np.squeeze(img.cpu().numpy()))
    ins_mask = infer.forward(np.squeeze(img.cpu().numpy()), np.squeeze(gt.cpu().numpy()))
#     ins_mask = infer.forward_gt(np.squeeze(img.cpu().numpy()), np.squeeze(gt.cpu().numpy()))

    tifffile.imsave(osp.join(path, name+"_pred.tif"), ins_mask[:300, :300, :300].astype(np.float16))
Esempio n. 8
0
def main(tocsv=False,
         save=False,
         mask=False,
         valid_train=False,
         toiou=False,
         submit_folder=False):
    model_name = config['param']['model']
    resize = not config['valid'].getboolean('pred_orig_size')

    if model_name == 'unet_vgg16':
        model = UNetVgg16(3, 1, fixed_vgg=True)
    elif model_name == 'dcan':
        model = DCAN(3, 1)
    elif model_name == 'caunet':
        model = CAUNet()
    elif model_name == 'camunet':
        model = CAMUNet()
    else:
        model = UNet()

    if torch.cuda.is_available():
        model = model.cuda()
        # model = torch.nn.DataParallel(model).cuda()

    # Sets the model in evaluation mode.
    model.eval()

    epoch = load_ckpt(model)
    if epoch == 0:
        print("Aborted: checkpoint not found!")
        return

    # prepare dataset
    compose = Compose(augment=False, resize=resize)
    #data_dir = 'data/stage1_train' if valid_train else 'data/stage1_test'
    #data_dir = 'data/stage1_train' if valid_train else '../bowl_classifier/stage2_test'
    data_dir = 'data/stage1_train' if valid_train else config['param'][
        'CSV_PATH']
    print(data_dir)
    data_dir = re.sub('\.csv', '', data_dir)
    dataset = KaggleDataset(data_dir,
                            transform=compose,
                            img_folder=config['param']['img_folder'])
    iter = predict(model, dataset, compose, resize)

    if tocsv:
        if valid_train:
            print('Saving %s/train_result.csv... Done!' % submit_folder)
            with open('%s/train_result.csv' % submit_folder, 'w') as csvfile:
                writer = csv.writer(csvfile)
                writer.writerow(['ImageId', 'EncodedPixels'])
                for uid, _, y, y_c, y_m, _, _, _, _ in iter:
                    for rle in prob_to_rles(y, y_c, y_m):
                        writer.writerow([uid, ' '.join([str(i) for i in rle])])
        else:
            print('Saving %s/test_result.csv... Done!' % submit_folder)
            with open('%s/test_result.csv' % submit_folder, 'w') as csvfile:
                writer = csv.writer(csvfile)
                writer.writerow(['ImageId', 'EncodedPixels'])
                for uid, _, y, y_c, y_m, _, _, _, _ in iter:
                    for rle in prob_to_rles(y, y_c, y_m):
                        writer.writerow([uid, ' '.join([str(i) for i in rle])])

    elif toiou and valid_train:
        print('Saving %s/iou_train.csv...Done!' % submit_folder)
        with open('%s/iou_train.csv' % submit_folder, 'w') as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow(['ImageId', 'IoU'])
            for uid, _, y, y_c, y_m, gt, _, _, _ in tqdm(iter):
                iou = get_iou(y, y_c, y_m, gt)
                writer.writerow([uid, iou])
    else:
        for uid, x, y, y_c, y_m, gt, gt_s, gt_c, gt_m in tqdm(iter):
            if valid_train:
                show_groundtruth(uid, x, y, y_c, y_m, gt, gt_s, gt_c, gt_m,
                                 save)
            elif mask:
                save_mask(uid, y, y_c, y_m)
            else:
                show(uid, x, y, y_c, y_m, save)

    if valid_train:
        data_dir = 'data/stage1_valid'
        if not os.path.exists(data_dir):
            print(
                '%s does not exist.  It will not generate %s/iou_valid.csv\nBye bye!'
                % (data_dir, submit_folder))
        else:
            dataset = KaggleDataset(data_dir, transform=compose)
            iter = predict(model, dataset, compose, resize)
            if toiou and valid_train:
                print('Saving %s/iou_valid.csv... Done!' % submit_folder)
                with open('%s/iou_valid.csv' % submit_folder, 'w') as csvfile:
                    writer = csv.writer(csvfile)
                    writer.writerow(['ImageId', 'IoU'])
                    for uid, _, y, y_c, y_m, gt, _, _, _ in tqdm(iter):
                        iou = get_iou(y, y_c, y_m, gt)
                        writer.writerow([uid, iou])
Esempio n. 9
0
def main(ckpt, tocsv=False, save=False, mask=False, target='test', toiou=False):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # load one or more checkpoint
    models = []
    for fn in ckpt or [None]:
        # load model
        model = load_ckpt(filepath=fn)
        if not model:
            print("Aborted: checkpoint {} not found!".format(fn))
            return
        # Sets the model in evaluation mode.
        model.eval()
        # put model to GPU
        if torch.cuda.device_count() > 1:
            print("Let's use", torch.cuda.device_count(), "GPUs!")
            model = nn.DataParallel(model)
        model = model.to(device)
        # append to model list
        models.append(model)

    resize = not config['valid'].getboolean('pred_orig_size')
    compose = Compose(augment=False, resize=resize)
    # decide which dataset to pick sample
    data_dir = os.path.join('data', target)
    if target == 'test':
        dataset = KaggleDataset(data_dir, transform=compose)
    elif os.path.exists('data/valid'):
        # advance mode: use valid folder as CV
        dataset = KaggleDataset(data_dir, transform=compose)
    else:
        # auto mode: split part of train dataset as CV
        dataset = KaggleDataset('data/train', transform=compose, use_filter=True)
        if target == 'train':
            dataset, _ = dataset.split()
        elif target == 'valid':
            _, dataset = dataset.split()

    # iterate dataset and inference each sample
    ious = []
    writer = csvfile = None
    for data in tqdm(dataset):
        with torch.no_grad():
            uid, y, y_c, y_m = inference(data, models, resize)
            x, gt, gt_s, gt_c, gt_m = unpack_data(data, compose, resize)

        if tocsv:
            if writer is None:
                csvfile = open('result.csv', 'w')
                writer = csv.writer(csvfile)
                writer.writerow(['ImageId', 'EncodedPixels'])
            for rle in prob_to_rles(y, y_c, y_m):
                writer.writerow([uid, ' '.join([str(i) for i in rle])])
        elif toiou:
            assert target != 'test'
            if writer is None:
                csvfile = open('iou.csv', 'w')
                writer = csv.writer(csvfile)
                writer.writerow(['ImageId', 'IoU'])
            iou = get_iou(y, y_c, y_m, gt)
            writer.writerow([uid, iou])
            ious.append(iou)
        elif mask:
            save_mask(uid, y, y_c, y_m)
        elif target == 'test':
            show(uid, x, y, y_c, y_m, save)
        else: # train or valid
            show_groundtruth(uid, x, y, y_c, y_m, gt, gt_s, gt_c, gt_m, save)

    # end of for-loop
    if csvfile is not None:
        csvfile.close()
    if toiou:
        print('\nIoU Metrics:\n mean: {0:.4f}\t std: {1:.4f}\t max: {2:.4f}\t min: {3:.4f}\t count: {4}\n'
            .format(np.mean(ious), np.std(ious), np.max(ious), np.min(ious), len(ious)))
Esempio n. 10
0
    # print('id_ ' + id_ + '\t' + f_content[id_]) # debug
    fn.write(f_content[id_])    
fn.close()



#   _   _   ____    ____       _      _____   _____            ____   ____   __     __
#  | | | | |  _ \  |  _ \     / \    |_   _| | ____|          / ___| / ___|  \ \   / /
#  | | | | | |_) | | | | |   / _ \     | |   |  _|    _____  | |     \___ \   \ \ / / 
#  | |_| | |  __/  | |_| |  / ___ \    | |   | |___  |_____| | |___   ___) |   \ V /  
#   \___/  |_|     |____/  /_/   \_\   |_|   |_____|          \____| |____/     \_/   
#     


CSV_FILE         = re.sub('\.csv','',CSV_OUT_PATH)
dataset_test     = KaggleDataset(CSV_FILE,transform=Compose(), img_folder= TEST_IMG_DIR, resize_scale=[128,128])
confidence_alert = 0

valid_idx = range(dataset_test.__len__())
valid_loader = DataLoader(dataset_test, sampler=SubsetRandomSampler(valid_idx),batch_size=4,num_workers=2)

# network
net = VGG('VGG16')
print(net)
net.cuda()
net.eval()
net.load_state_dict(torch.load(MODEL_IN_PATH))

invert_majorlabel = {v:k for k,v in dataset_test.majorlabels.items()}

for i, data in enumerate(valid_loader, 0):
Esempio n. 11
0
        if single_line_list[M_Category_idx] != 'Histology':
            single_line_list[Pred_sub_idx] = single_line_list[M_Category_idx]
            single_line_list[S_Category_idx] = single_line_list[M_Category_idx]
        f_content[single_line_list[Image_id_idx]] = ','.join(single_line_list)
fn.close()

#   _   _   ____    ____       _      _____   _____            ____   ____   __     __
#  | | | | |  _ \  |  _ \     / \    |_   _| | ____|          / ___| / ___|  \ \   / /
#  | | | | | |_) | | | | |   / _ \     | |   |  _|    _____  | |     \___ \   \ \ / /
#  | |_| | |  __/  | |_| |  / ___ \    | |   | |___  |_____| | |___   ___) |   \ V /
#   \___/  |_|     |____/  /_/   \_\   |_|   |_____|          \____| |____/     \_/
#

CSV_FILE = re.sub('\.csv', '', CSV_IN_PATH)
dataset_test = KaggleDataset(CSV_FILE,
                             transform=Compose(),
                             category='Histology',
                             img_folder=TEST_IMG_DIR,
                             resize_scale=[128, 128])
confidence_alert = 0

valid_idx = range(dataset_test.__len__())
valid_loader = DataLoader(dataset_test,
                          sampler=SubsetRandomSampler(valid_idx),
                          batch_size=4,
                          num_workers=2)

# network
net = VGG('VGG16')
print(net)
net.cuda()
Esempio n. 12
0
def main(resume=True, n_epoch=None, learn_rate=None):
    model_name = config['param']['model']
    cv_ratio = config['param'].getfloat('cv_ratio')
    if learn_rate is None:
        learn_rate = config['param'].getfloat('learn_rate')
    width = config[model_name].getint('width')
    weight_map = config['param'].getboolean('weight_map')
    c = config['train']
    log_name = c.get('log_name')
    n_batch = c.getint('n_batch')
    n_worker = c.getint('n_worker')
    n_ckpt_epoch = c.getint('n_ckpt_epoch')
    if n_epoch is None:
        n_epoch = c.getint('n_epoch')

    # initialize model
    if model_name == 'unet_vgg16':
        model = UNetVgg16(3, 1, fixed_vgg=True)
    elif model_name == 'dcan':
        model = DCAN(3, 1)
    elif model_name == 'caunet':
        model = CAUNet()
    elif model_name == 'camunet':
        model = CAMUNet()
    else:
        model = UNet()

    if torch.cuda.is_available():
        model = model.cuda()
        # model = torch.nn.DataParallel(model).cuda()

    # define optimizer
    optimizer = torch.optim.Adam(
        filter(lambda p: p.requires_grad, model.parameters()),
        lr=args.learn_rate,
        weight_decay=1e-6
        )

    # dataloader workers are forked process thus we need a IPC manager to keep cache in same memory space
    manager = Manager()
    cache = manager.dict()
    # prepare dataset and loader
    dataset = KaggleDataset('data/stage1_train', transform=Compose(), cache=cache)
    train_idx, valid_idx = dataset.split()
    train_loader = DataLoader(
        dataset, sampler=SubsetRandomSampler(train_idx),
        batch_size=n_batch,
        num_workers=n_worker,
        pin_memory=torch.cuda.is_available())
    valid_loader = DataLoader(
        dataset, sampler=SubsetRandomSampler(valid_idx),
        batch_size=n_batch,
        num_workers=n_worker)

    # resume checkpoint
    start_epoch = 0
    if resume:
        start_epoch = load_ckpt(model, optimizer)
    if start_epoch == 0:
        print('Grand new training ...')

    # decide log directory name
    log_dir = os.path.join(
        'logs', log_name, '{}-{}'.format(model_name, width),
        'ep_{},{}-lr_{}'.format(
            start_epoch,
            n_epoch + start_epoch,
            learn_rate,
        )
    )

    with SummaryWriter(log_dir) as writer:
        if start_epoch == 0 and False:
            # dump graph only for very first training, disable by default
            dump_graph(model, writer, n_batch, width)
        print('Training started...')
        for epoch in range(start_epoch, n_epoch + start_epoch):
            train(train_loader, model, optimizer, epoch, writer)
            if cv_ratio > 0 and epoch % 3 == 2:
                valid(valid_loader, model, epoch, writer, len(train_loader))
            # save checkpoint per n epoch
            if epoch % n_ckpt_epoch == n_ckpt_epoch - 1:
                save_ckpt(model, optimizer, epoch+1)
        print('Training finished...')
Esempio n. 13
0
        #     # data must be a ndarray
        #     # target must be a ndarray,and encode as one-hot (1,num_class)
        #     datas.append(data)
        #     targets.append(target)
        return np.asarray(datas), np.asarray(targets)#,np.asarray(videos_name)


if __name__ == '__main__':
    from PIL import Image
    import matplotlib.pyplot as plt
    from dataset import Dataset, Compose, Scale, CenterCrop, Normalize
    import scipy.misc as misc
    # mean=[114.7748, 107.7354, 99.4750]
    # std=[58.395, 57.12, 57.375]

    spatial_transform = Compose([Scale((224, 224))])
    json_file1 = "/home/pr606/python_vir/yuan/i3d-kinects/dataset/ucf101_lmdb.json"
    json_file2 = '/home/pr606/Pictures/dataset_annotations/ucf101_json_file/ucf101_01.json'

    train_set = DataSet(clip_length=25,
                        sample_step=9,
                        data_root='/home/pr606/Pictures/UCF101DATASET/ucf101',
                        annotation_path=json_file1,
                        spatial_transform=None,
                        mode='train',
                        with_start=True, multi_sample=True)

    train_generator = DataGenerator(train_set, batch_size=7, ordered_file_path='./names_in_order.csv')
    print(train_generator.__len__())   # NUM_of_datas / batchsize
    for i,(datas,labels) in enumerate(train_generator):
        # print(datas.shape)