Esempio n. 1
0
if opt.test_dec_epoch != 0:
    # Load pretrained models
    decision_net.load_state_dict(
        torch.load("./saved_models/decision_net_%d.pth" %
                   (opt.test_dec_epoch)))

transforms_ = transforms.Compose([
    transforms.Resize((opt.img_height, opt.img_width), Image.BICUBIC),
    transforms.ToTensor(),
    #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])

testloader = DataLoader(
    KolektorDataset(dataSetRoot,
                    transforms_=transforms_,
                    transforms_mask=None,
                    subFold="Test",
                    isTrain=False),
    batch_size=1,
    shuffle=False,
    num_workers=0,
)

#segment_net.eval()
#decision_net.eval()

save_path_str = "testResult"
if os.path.exists(save_path_str) == False:
    os.makedirs(save_path_str, exist_ok=True)

for i, testBatch in enumerate(testloader):
Esempio n. 2
0
transforms_ = transforms.Compose([
    transforms.Resize((opt.img_height, opt.img_width), Image.BICUBIC),
    transforms.ToTensor(),
    #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])

transforms_mask = transforms.Compose([
    transforms.Resize((opt.img_height // 8, opt.img_width // 8)),
    transforms.ToTensor(),
    #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])

trainOKloader = DataLoader(
    KolektorDataset(dataSetRoot,
                    transforms_=transforms_,
                    transforms_mask=transforms_mask,
                    subFold="Train_OK",
                    isTrain=True),
    batch_size=opt.batch_size,
    shuffle=True,
    num_workers=opt.worker_num,
)

trainNGloader = DataLoader(
    KolektorDataset(dataSetRoot,
                    transforms_=transforms_,
                    transforms_mask=transforms_mask,
                    subFold="Train_NG",
                    isTrain=True),
    batch_size=opt.batch_size,
    shuffle=True,
Esempio n. 3
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument("--cuda",
                        type=bool,
                        default=True,
                        help="number of gpu")
    parser.add_argument("--gpu_num", type=int, default=1, help="number of gpu")
    parser.add_argument("--worker_num",
                        type=int,
                        default=4,
                        help="number of input workers")
    parser.add_argument("--batch_size",
                        type=int,
                        default=4,
                        help="batch size of input")
    parser.add_argument("--lr",
                        type=float,
                        default=0.0001,
                        help="adam: learning rate")
    parser.add_argument("--b1",
                        type=float,
                        default=0.5,
                        help="adam: decay of first order momentum of gradient")
    parser.add_argument("--b2",
                        type=float,
                        default=0.999,
                        help="adam: decay of first order momentum of gradient")

    parser.add_argument("--begin_epoch",
                        type=int,
                        default=0,
                        help="begin_epoch")
    parser.add_argument("--end_epoch", type=int, default=61, help="end_epoch")
    parser.add_argument("--seg_epoch",
                        type=int,
                        default=100,
                        help="pretrained segment epoch")

    parser.add_argument("--need_test",
                        type=bool,
                        default=True,
                        help="need to test")
    parser.add_argument("--test_interval",
                        type=int,
                        default=10,
                        help="interval of test")
    parser.add_argument("--need_save",
                        type=bool,
                        default=True,
                        help="need to save")
    parser.add_argument("--save_interval",
                        type=int,
                        default=10,
                        help="interval of save weights")

    parser.add_argument("--img_height",
                        type=int,
                        default=1408,
                        help="size of image height")  # 1408x512 704x256
    parser.add_argument("--img_width",
                        type=int,
                        default=512,
                        help="size of image width")

    opt = parser.parse_args()
    print(opt)

    dataSetRoot = "./KolektorSDD_Data"

    # Build nets
    segment_net = SegmentNet(init_weights=True)
    decision_net = DecisionNet(init_weights=True)

    # Loss functions
    #criterion_segment  = torch.nn.MSELoss()
    criterion_decision = torch.nn.MSELoss()
    #criterion_decision = torch.nn.BCEWithLogitsLoss()

    # Optimizers
    optimizer_dec = torch.optim.Adam(decision_net.parameters(),
                                     lr=opt.lr,
                                     betas=(opt.b1, opt.b2))

    if opt.cuda:
        segment_net = segment_net.cuda()
        decision_net = decision_net.cuda()
        # criterion_segment.cuda()
        criterion_decision.cuda()

    if opt.gpu_num > 1:
        segment_net = torch.nn.DataParallel(segment_net,
                                            device_ids=list(range(
                                                opt.gpu_num)))
        decision_net = torch.nn.DataParallel(decision_net,
                                             device_ids=list(range(
                                                 opt.gpu_num)))

    if opt.begin_epoch != 0:
        # Load pretrained models
        decision_net.load_state_dict(
            torch.load("./saved_models/decision_net_%d.pth" %
                       (opt.begin_epoch)))
    else:
        # Initialize weights
        decision_net.apply(weights_init_normal)

    # load pretrained segment parameters
    segment_net.load_state_dict(
        torch.load("./saved_models/segment_net_%d.pth" % (opt.seg_epoch)))
    segment_net.eval()

    transforms_ = transforms.Compose([
        transforms.Resize((opt.img_height, opt.img_width), Image.BICUBIC),
        transforms.ToTensor(),
        #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])

    transforms_mask = transforms.Compose([
        transforms.Resize((opt.img_height // 8, opt.img_width // 8)),
        transforms.ToTensor(),
        #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])

    trainOKloader = DataLoader(
        KolektorDataset(dataSetRoot,
                        transforms_=transforms_,
                        transforms_mask=transforms_mask,
                        subFold="Train_OK",
                        isTrain=True),
        batch_size=opt.batch_size,
        shuffle=True,
        num_workers=opt.worker_num,
    )
    trainNGloader = DataLoader(
        KolektorDataset(dataSetRoot,
                        transforms_=transforms_,
                        transforms_mask=transforms_mask,
                        subFold="Train_NG",
                        isTrain=True),
        batch_size=opt.batch_size,
        shuffle=True,
        num_workers=opt.worker_num,
    )
    '''
    trainloader =  DataLoader(
        KolektorDataset(dataSetRoot, transforms_=transforms_,  transforms_mask= transforms_mask, 
            subFold="Train_ALL", isTrain=True),
        batch_size=opt.batch_size,
        shuffle=True,
        num_workers=opt.worker_num,
    )
    '''
    testloader = DataLoader(
        KolektorDataset(dataSetRoot,
                        transforms_=transforms_,
                        transforms_mask=transforms_mask,
                        subFold="Test/Train_NG",
                        isTrain=False),
        batch_size=1,
        shuffle=False,
        num_workers=0,
    )

    for epoch in range(opt.begin_epoch, opt.end_epoch):

        iterOK = trainOKloader.__iter__()
        iterNG = trainNGloader.__iter__()

        lenNum = min(len(trainNGloader), len(trainOKloader))
        lenNum = 2 * (lenNum - 1)

        decision_net.train()
        segment_net.eval()
        # train
        for i in range(0, lenNum):
            if i % 2 == 0:
                batchData = iterOK.__next__()
                #idx, batchData = enumerate(trainOKloader)
                gt_c = Variable(torch.Tensor(
                    np.zeros((batchData["img"].size(0), 1))),
                                requires_grad=False)
            else:
                batchData = iterNG.__next__()
                gt_c = Variable(torch.Tensor(
                    np.ones((batchData["img"].size(0), 1))),
                                requires_grad=False)
                #idx, batchData = enumerate(trainNGloader)

            if opt.cuda:
                img = batchData["img"].cuda()
                mask = batchData["mask"].cuda()
                gt_c = gt_c.cuda()
            else:
                img = batchData["img"]
                mask = batchData["mask"]

            rst = segment_net(img)
            f = rst["f"]
            seg = rst["seg"]

            optimizer_dec.zero_grad()

            rst_d = decision_net(f, seg)
            # rst_d = torch.Tensor.long(rst_d)

            loss_dec = criterion_decision(rst_d, gt_c)
            loss_dec.backward()
            optimizer_dec.step()

            sys.stdout.write(
                "\r [Epoch %d/%d]  [Batch %d/%d] [loss %f]" %
                (epoch, opt.end_epoch, i, lenNum, loss_dec.item()))

        # test
        if opt.need_test and epoch % opt.test_interval == 0 and epoch >= opt.test_interval:
            decision_net.eval()
            # segment_net.eval()
            all_time = 0
            for i, testBatch in enumerate(testloader):
                imgTest = testBatch["img"].cuda()
                t1 = time.time()

                rstTest = segment_net(imgTest)
                fTest = rstTest["f"]
                segTest = rstTest["seg"]
                cTest = decision_net(fTest, segTest)

                t2 = time.time()
                save_path_str = "./testResultDec/epoch_%d" % epoch
                if os.path.exists(save_path_str) == False:
                    os.makedirs(save_path_str, exist_ok=True)
                    # os.mkdir(save_path_str)
                if cTest.item() > 0.5:
                    labelStr = "NG"
                else:
                    labelStr = "OK"
                save_image(imgTest.data,
                           "%s/img_%d_%s.jpg" % (save_path_str, i, labelStr))
                save_image(
                    segTest.data,
                    "%s/img_%d_seg_%s.jpg" % (save_path_str, i, labelStr))

                # print("processing image NO %d, time comsuption %fs"%(i, t2 - t1))
                all_time = (t2 - t1) + all_time
                count_time = i + 1
                # print(all_time, count_time)

            avg_time = all_time / count_time
            print("\na image avg time %fs" % avg_time)
            decision_net.train()

        # save model parameters
        if opt.need_save and epoch % opt.save_interval == 0 and epoch >= opt.save_interval:
            # decision_net.eval()
            save_path_str = "./saved_models"
            if os.path.exists(save_path_str) == False:
                os.makedirs(save_path_str, exist_ok=True)
            torch.save(decision_net.state_dict(),
                       "%s/decision_net_%d.pth" % (save_path_str, epoch))
            print("save weights ! epoch = %d" % epoch)
            # decision_net.train()
            pass