Esempio n. 1
0
 def __init__(self, model_path, dataset):
     self.model = Decoder()
     self.model.load_state_dict(torch.load(model_path))
     self.model.eval()
     self.data = NewDataset(dataset)
     found = False
     i = 1
     while not found:
         if model_path[-i] == '_':
             self.name = model_path[-i + 1:]
             found = True
         i += 1
Esempio n. 2
0
class ModelEvaluator:  # This class creates audio file using trained model so that we can listen the result
    def __init__(self, model_path, dataset):
        self.model = Decoder()
        self.model.load_state_dict(torch.load(model_path))
        self.model.eval()
        self.data = NewDataset(dataset)
        found = False
        i = 1
        while not found:
            if model_path[-i] == '_':
                self.name = model_path[-i + 1:]
                found = True
            i += 1

    def play_output(self,
                    output_path,
                    key,
                    speaker_id=None,
                    iter=100,
                    fs=16000,
                    return_original=False):
        index = 0
        for k in self.data.keys:
            if key in k:
                break
            else:
                index += 1

        original_id, embedding, fft, n_frames_before_pad, mean, std = self.data.__getitem__(
            index)
        if speaker_id is None:
            speaker_id = int(original_id)
        speaker_id = torch.tensor([speaker_id]).long()
        embedding = torch.from_numpy(
            embedding[:n_frames_before_pad]).unsqueeze(0).long()
        output = self.model(embedding, speaker_id).squeeze(0)
        output = output.detach().numpy()
        mean = np.repeat(mean, n_frames_before_pad, axis=1)
        std = np.repeat(std, n_frames_before_pad, axis=1)
        output = np.multiply(output, std) + mean
        ''''
        import matplotlib.pyplot as plt
        plt.figure(figsize=(output.shape[0]//20, 12))
        #plt.subplot(1, 2, 1)
        plt.matshow(output, fignum=False)
        #plt.subplot(1, 2, 2)
        #plt.matshow(embedding[0,:,:].T, fignum=False)
        plt.show()
        '''

        grif_out = lib.core.griffinlim(np.exp(output),
                                       n_iter=iter,
                                       hop_length=160,
                                       win_length=512)
        write(output_path + key + '_' + self.name + '.wav', fs, grif_out)
        """
Esempio n. 3
0
    log_loc = './logs/'
    now = datetime.datetime.now()
    time = str(now.day) + '.' + str(now.month) + '.' + str(
        now.year) + '__' + str(now.hour) + ':' + str(now.minute)
    logFileName = arch + '_' + embed_type + '_' + embed_crop + '_' + dataset + '_' + run_name + '_' + time + '.log'
    log = get_logger('zerospeech', logFileName)

    #server = 'gpu1'
    server = 'gpu2'
    if server == 'gpu1':
        prefix = '/mnt/gpu2'
    else:
        prefix = ''
    output_path = prefix + '/home/mansur/zerospeech/models/cnn_models/'
    device = "cuda"
    data = NewDataset(dataset)
    print('Data is ready')
    loader = DataLoader(data, batch_size=128, num_workers=8, shuffle=True)
    model = CNN().to(device)
    criterion = nn.MSELoss()  # first try to reconstruct the spectrum
    optG = optim.Adam(model.parameters())
    max_epoch = 300

    print('Start Training')
    for epoch in range(max_epoch):
        totalLoss = 0
        lens = 0.0
        counter = 0.0
        for speaker, embedding, fft, lengths, _, _ in loader:
            max_len = int(lengths.float().mean())
            embedding = embedding.to(device).long()[:, :max_len]
Esempio n. 4
0
history = 0.0
new = 1.0

BS = {'64':200, '128': 90, '256':40}

for epoch in range(1,opt.epoches+1):
    batch_size = BS['%d'%finesize]
    print('Batch Size: %d'%(batch_size))

    Loss_Dis_ = []
    Loss_Stylied_2_ = []
    Loss_D_ = []

    ###############   DATASET   ##################
    dataset = NewDataset(opt.loadSize, opt.fineSize, opt.flip, finesize)
    loader_ = torch.utils.data.DataLoader(dataset=dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=8)
    loader = iter(loader_)

    iter_per_epoch = int(len(dataset) / batch_size)


    for iteration in range(1,iter_per_epoch+1):
        netG.zero_grad()

        if(history>0 and new<1):
            history -= 0.001
            new += 0.001
Esempio n. 5
0
opt.cuda = (opt.gpu != -1)

if opt.manualSeed is None:
    opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
    torch.cuda.manual_seed_all(opt.manualSeed)

cudnn.benchmark = True
device = torch.device("cuda:%d" % (opt.gpu) if opt.cuda else "cpu")

###############   Dataset   ##################
dataset = NewDataset(opt.loadSize, opt.fineSize, opt.flip)
loader_ = torch.utils.data.DataLoader(dataset=dataset,
                                      batch_size=opt.batchSize,
                                      shuffle=True,
                                      num_workers=8)
loader = iter(loader_)

if opt.domain_adaptation:
    wild_dataset = NewDataset(opt.loadSize, opt.fineSize, opt.flip)
    wild_dataset.unsupervied = True
    wild_loader_ = torch.utils.data.DataLoader(dataset=wild_dataset,
                                               batch_size=opt.batchSize,
                                               shuffle=True,
                                               num_workers=8)
    wild_loader = iter(wild_loader_)
Esempio n. 6
0
    disc_interpolates = netD(interpolates)

    gradients = grad(outputs=disc_interpolates,
                     inputs=interpolates,
                     grad_outputs=torch.ones(
                         disc_interpolates.size()).to(device),
                     create_graph=True,
                     retain_graph=True,
                     only_inputs=True)[0]

    gradient_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean()
    return gradient_penalty


###############   Dataset   ##################
dataset = NewDataset(opt.style_path, opt.glyph_path)
loader_ = torch.utils.data.DataLoader(dataset=dataset,
                                      batch_size=opt.batchSize,
                                      shuffle=True,
                                      num_workers=8)
loader = iter(loader_)

###########   Training   ###########
CRITIC_ITERS = 2
lambda_gp = 10
current_size = 256
Min_loss = 100000

for iteration in range(1, opt.niter + 1):

    ############################