Esempio n. 1
0
def eval(model, filenames, num_classes):

    model.eval()
    # recover h and w
    factor = config.problem_factor[params.problem_type]
    original_height, original_width = config.original_height, config.original_width
    h_start, w_start = config.h_start, config.w_start

    transform = Compose([
        Resize(height=params.train_height, width=params.train_width, p=1),
        Normalize(p=1)
    ],
                        p=1)

    dataloader = DataLoader(dataset=RobotSegDataset(
        filenames,
        transform=transform,
        mode='eval',
        problem_type=params.problem_type),
                            shuffle=False,
                            num_workers=params.num_workers,
                            batch_size=params.batch_size,
                            pin_memory=True)

    with torch.no_grad():
        # init progress bar for each epoch
        tq = tqdm.tqdm(total=len(dataloader.dataset))
        tq.set_description("Predict [{}]".format(params.model.__name__))
        for batch_num, (filenames, inputs) in enumerate(dataloader):
            # no grad for targets
            inputs = inputs.cuda(non_blocking=True)
            outputs = model(inputs)

            for i, filename in enumerate(filenames):
                # binary
                if num_classes == 2:
                    t_mask = ((outputs[i, 0] > 0).data.cpu().numpy() *
                              factor).astype(np.uint8)
                    # t_mask = (torch.sigmoid(outputs[i, 0]).data.cpu().numpy() * factor).astype(np.uint8)
                else:
                    t_mask = (outputs[i].data.cpu().numpy().argmax(axis=0) *
                              factor).astype(np.uint8)

                t_mask = cv2.resize(t_mask,
                                    dsize=(config.cropped_width,
                                           config.cropped_height),
                                    interpolation=cv2.INTER_AREA)

                # generate mask
                h, w = t_mask.shape
                # recover to original shape
                full_mask = np.zeros((original_height, original_width))
                full_mask[h_start:h_start + h, w_start:w_start + w] = t_mask

                # not recover
                # full_mask = t_mask[0]


                prediction_folder = Path(filenames[i]).parent.parent / \
                    'prediction' / params.problem_type

                prediction_folder.mkdir(exist_ok=True, parents=True)

                cv2.imwrite(
                    str(prediction_folder /
                        (Path(filenames[i]).stem + '.png')), full_mask)

            tq.update(params.batch_size)
        tq.close()
Esempio n. 2
0
def train_fold(fold, args):
    # loggers
    logging_logger = args.logging_logger
    if args.tb_log:
        tb_logger = args.tb_logger

    num_classes = utils.problem_class[args.problem_type]

    # init model
    model = eval(args.model)(in_channels=3, num_classes=num_classes, bn=False)
    model = nn.DataParallel(model, device_ids=args.device_ids).cuda()

    # transform for train/valid data
    train_transform, valid_transform = get_transform(args.model)

    # loss function
    loss_func = LossMulti(num_classes, args.jaccard_weight)
    if args.semi:
        loss_func_semi = LossMultiSemi(num_classes, args.jaccard_weight,
                                       args.semi_loss_alpha, args.semi_method)

    # train/valid filenames
    train_filenames, valid_filenames = utils.trainval_split(
        args.train_dir, fold)

    ckpt_dir = Path(args.ckpt_dir)
    ckpt_filename = ckpt_dir.glob('fold_%d_model_[0-9]*.pth' % fold)[0]
    res = re.match(r'fold_%d_model_(\d+).pth' % fold, ckpt_filename)
    # restore epoch
    engine.state.epoch = int(res.groups()[0])
    # load model state dict
    model.load_state_dict(torch.load(str(ckpt_filename)))
    logging_logger.info('restore model [{}] from epoch {}.'.format(
        args.model, engine.state.epoch))

    # DataLoader and Dataset args
    # train_shuffle = True
    # train_ds_kwargs = {
    #     'filenames': train_filenames,
    #     'problem_type': args.problem_type,
    #     'transform': train_transform,
    #     'model': args.model,
    #     'mode': 'train',
    #     'semi': args.semi,
    # }

    valid_num_workers = args.num_workers
    valid_batch_size = args.batch_size
    # if 'TAPNet' in args.model:
    #     # for TAPNet, cancel default shuffle, use self-defined shuffle in torch.Dataset instead
    #     train_shuffle = False
    #     train_ds_kwargs['batch_size'] = args.batch_size
    #     train_ds_kwargs['mf'] = args.mf
    # if args.semi == True:
    #     train_ds_kwargs['semi_method'] = args.semi_method
    #     train_ds_kwargs['semi_percentage'] = args.semi_percentage

    # additional valid dataset kws
    valid_ds_kwargs = {
        'filenames': valid_filenames,
        'problem_type': args.problem_type,
        'transform': valid_transform,
        'model': args.model,
        'mode': 'valid',
    }

    if 'TAPNet' in args.model:
        # in validation, num_workers should be set to 0 for sequences
        valid_num_workers = 0
        # in validation, batch_size should be set to 1 for sequences
        valid_batch_size = 1
        valid_ds_kwargs['mf'] = args.mf

    # # train dataloader
    # train_loader = DataLoader(
    #     dataset=RobotSegDataset(**train_ds_kwargs),
    #     shuffle=train_shuffle, # set to False to disable pytorch dataset shuffle
    #     num_workers=args.num_workers,
    #     batch_size=args.batch_size,
    #     pin_memory=True
    # )
    # valid dataloader
    valid_loader = DataLoader(
        dataset=RobotSegDataset(**valid_ds_kwargs),
        shuffle=False,  # in validation, no need to shuffle
        num_workers=valid_num_workers,
        batch_size=
        valid_batch_size,  # in valid time. have to use one image by one
        pin_memory=True)

    # optimizer
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           weight_decay=args.weight_decay)

    # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9,
    #     weight_decay=args.weight_decay, nesterov=True)

    # # ignite trainer process function
    # def train_step(engine, batch):
    #     # set model to train
    #     model.train()
    #     # clear gradients
    #     optimizer.zero_grad()

    #     # additional params to feed into model
    #     add_params = {}
    #     inputs = batch['input'].cuda(non_blocking=True)
    #     with torch.no_grad():
    #         targets = batch['target'].cuda(non_blocking=True)
    #         # for TAPNet, add attention maps
    #         if 'TAPNet' in args.model:
    #             add_params['attmap'] = batch['attmap'].cuda(non_blocking=True)

    #     outputs = model(inputs, **add_params)

    #     loss_kwargs = {}

    #     if args.semi:
    #         loss_kwargs['labeled'] = batch['labeled']
    #         if args.semi_method == 'rev_flow':
    #             loss_kwargs['optflow'] = batch['optflow']
    #         loss = loss_func_semi(outputs, targets, **loss_kwargs)
    #     else:
    #         loss = loss_func(outputs, targets, **loss_kwargs)
    #     loss.backward()
    #     optimizer.step()

    #     return_dict = {
    #         'output': outputs,
    #         'target': targets,
    #         'loss_kwargs': loss_kwargs,
    #         'loss': loss.item(),
    #     }

    #     # for TAPNet, update attention maps after each iteration
    #     if 'TAPNet' in args.model:
    #         # output_classes and target_classes: <b, h, w>
    #         output_softmax_np = torch.softmax(outputs, dim=1).detach().cpu().numpy()
    #         # update attention maps
    #         train_loader.dataset.update_attmaps(output_softmax_np, batch['abs_idx'].numpy())
    #         return_dict['attmap'] = add_params['attmap']

    #     return return_dict

    # # init trainer
    # trainer = engine.Engine(train_step)

    # # lr scheduler and handler
    # # cyc_scheduler = optim.lr_scheduler.CyclicLR(optimizer, args.lr / 100, args.lr)
    # # lr_scheduler = c_handlers.param_scheduler.LRScheduler(cyc_scheduler)
    # # trainer.add_event_handler(engine.Events.ITERATION_COMPLETED, lr_scheduler)

    # step_scheduler = optim.lr_scheduler.StepLR(optimizer,
    #     step_size=args.lr_decay_epochs, gamma=args.lr_decay)
    # lr_scheduler = c_handlers.param_scheduler.LRScheduler(step_scheduler)
    # trainer.add_event_handler(engine.Events.EPOCH_STARTED, lr_scheduler)

    # @trainer.on(engine.Events.STARTED)
    # def trainer_start_callback(engine):
    #     logging_logger.info('training fold {}, {} train / {} valid files'. \
    #         format(fold, len(train_filenames), len(valid_filenames)))

    #     # resume training
    #     if args.resume:
    #         # ckpt for current fold fold_<fold>_model_<epoch>.pth
    #         ckpt_dir = Path(args.ckpt_dir)
    #         ckpt_filename = ckpt_dir.glob('fold_%d_model_[0-9]*.pth' % fold)[0]
    #         res = re.match(r'fold_%d_model_(\d+).pth' % fold, ckpt_filename)
    #         # restore epoch
    #         engine.state.epoch = int(res.groups()[0])
    #         # load model state dict
    #         model.load_state_dict(torch.load(str(ckpt_filename)))
    #         logging_logger.info('restore model [{}] from epoch {}.'.format(args.model, engine.state.epoch))
    #     else:
    #         logging_logger.info('train model [{}] from scratch'.format(args.model))

    #     # record metrics history every epoch
    #     engine.state.metrics_records = {}

    # @trainer.on(engine.Events.EPOCH_STARTED)
    # def trainer_epoch_start_callback(engine):
    #     # log learning rate on pbar
    #     train_pbar.log_message('model: %s, problem type: %s, fold: %d, lr: %.5f, batch size: %d' % \
    #         (args.model, args.problem_type, fold, lr_scheduler.get_param(), args.batch_size))

    #     # for TAPNet, change dataset schedule to random after the first epoch
    #     if 'TAPNet' in args.model and engine.state.epoch > 1:
    #         train_loader.dataset.set_dataset_schedule("shuffle")

    # @trainer.on(engine.Events.ITERATION_COMPLETED)
    # def trainer_iter_comp_callback(engine):
    #     # logging_logger.info(engine.state.metrics)
    #     pass

    # # monitor loss
    # # running average loss
    # train_ra_loss = imetrics.RunningAverage(output_transform=
    #     lambda x: x['loss'], alpha=0.98)
    # train_ra_loss.attach(trainer, 'train_ra_loss')

    # # monitor train loss over epoch
    # if args.semi:
    #     train_loss = imetrics.Loss(loss_func_semi, output_transform=lambda x: (x['output'], x['target'], x['loss_kwargs']))
    # else:
    #     train_loss = imetrics.Loss(loss_func, output_transform=lambda x: (x['output'], x['target']))
    # train_loss.attach(trainer, 'train_loss')

    # # progress bar
    # train_pbar = c_handlers.ProgressBar(persist=True, dynamic_ncols=True)
    # train_metric_names = ['train_ra_loss']
    # train_pbar.attach(trainer, metric_names=train_metric_names)

    # # tensorboardX: log train info
    # if args.tb_log:
    #     tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer, 'lr'),
    #         event_name=engine.Events.EPOCH_STARTED)

    #     tb_logger.attach(trainer, log_handler=OutputHandler('train_iter', train_metric_names),
    #         event_name=engine.Events.ITERATION_COMPLETED)

    #     tb_logger.attach(trainer, log_handler=OutputHandler('train_epoch', ['train_loss']),
    #         event_name=engine.Events.EPOCH_COMPLETED)

    #     tb_logger.attach(trainer,
    #          log_handler=WeightsScalarHandler(model, reduction=torch.norm),
    #          event_name=engine.Events.ITERATION_COMPLETED)

    # tb_logger.attach(trainer, log_handler=tb_log_train_vars,
    #     event_name=engine.Events.ITERATION_COMPLETED)

    # ignite validator process function
    def valid_step(engine, batch):
        with torch.no_grad():
            model.eval()
            inputs = batch['input'].cuda(non_blocking=True)
            targets = batch['target'].cuda(non_blocking=True)

            # additional arguments
            add_params = {}
            # for TAPNet, add attention maps
            if 'TAPNet' in args.model:
                add_params['attmap'] = batch['attmap'].cuda(non_blocking=True)

            # output logits
            outputs = model(inputs, **add_params)
            # loss
            loss = loss_func(outputs, targets)

            output_softmaxs = torch.softmax(outputs, dim=1)
            output_argmaxs = output_softmaxs.argmax(dim=1)
            # output_classes and target_classes: <b, h, w>
            output_classes = output_argmaxs.cpu().numpy()
            target_classes = targets.cpu().numpy()

            # record current batch metrics
            iou_mRecords = MetricRecord()
            dice_mRecords = MetricRecord()

            cm_b = np.zeros((num_classes, num_classes), dtype=np.uint32)

            for output_class, target_class in zip(output_classes,
                                                  target_classes):
                # calculate metrics for each frame
                # calculate using confusion matrix or dirctly using definition
                cm = calculate_confusion_matrix_from_arrays(
                    output_class, target_class, num_classes)
                iou_mRecords.update_record(calculate_iou(cm))
                dice_mRecords.update_record(calculate_dice(cm))
                cm_b += cm

                ######## calculate directly using definition ##########
                # iou_mRecords.update_record(iou_multi_np(target_class, output_class))
                # dice_mRecords.update_record(dice_multi_np(target_class, output_class))

            # accumulate batch metrics to engine state
            engine.state.epoch_metrics['confusion_matrix'] += cm_b
            engine.state.epoch_metrics['iou'].merge(iou_mRecords)
            engine.state.epoch_metrics['dice'].merge(dice_mRecords)

            return_dict = {
                'loss': loss.item(),
                'output': outputs,
                'output_argmax': output_argmaxs,
                'target': targets,
                # for monitoring
                'iou': iou_mRecords,
                'dice': dice_mRecords,
            }

            if 'TAPNet' in args.model:
                # for TAPNet, update attention maps after each iteration
                valid_loader.dataset.update_attmaps(
                    output_softmaxs.cpu().numpy(), batch['abs_idx'].numpy())
                # for TAPNet, return extra internal values
                return_dict['attmap'] = add_params['attmap']
                # TODO: for TAPNet, return internal self-learned attention maps

            return return_dict
Esempio n. 3
0
def process_fold(fold, args):
    num_classes = utils.problem_class[args.problem_type]
    factor = utils.problem_factor[args.problem_type]
    # inputs are RGB images (3 * h * w)
    # outputs are 2d multilabel segmentation maps (h * w)
    model = eval(args.model)(in_channels=3, num_classes=num_classes)
    # data parallel for multi-GPU
    model = nn.DataParallel(model, device_ids=args.device_ids).cuda()

    ckpt_dir = Path(args.ckpt_dir)
    #p = pathlib.Path(ckpt_dir)
    # ckpt for this fold fold_<fold>_model_<epoch>.pth
    print("ckpt_dir--> ", ckpt_dir)
    filenames = glob.glob(args.ckpt_dir + 'fold_%d_model_[0-99]*.pth' % fold)
    #filenames = glob.glob(args.ckpt_dir+'fold_%d_model_[0-99]*.pth')
    #filenames = ckpt_dir.glob(args.ckpt_dir+'fold_%d_model_[0-9]*.pth'%fold)

    print("Filename--> ", filenames)
    # if len(filenames) != 1:
    #    raise ValueError('invalid model ckpt name. correct ckpt name should be \
    #        fold_<fold>_model_<epoch>.pth')

    ckpt_filename = filenames[0]
    # load state dict
    model.load_state_dict(torch.load(str(ckpt_filename)))
    logging.info('Restored model [{}] fold {}.'.format(args.model, fold))

    # segmentation mask save directory
    mask_save_dir = Path(args.mask_save_dir) / ckpt_dir.name
    mask_save_dir.mkdir(exist_ok=True, parents=True)
    #print("mask_save_dir", mask_save_dir)

    eval_transform = Compose(
        [
            Normalize(p=1),
            PadIfNeeded(
                min_height=args.input_height, min_width=args.input_width, p=1),

            # optional
            Resize(height=args.input_height, width=args.input_width, p=1),
            # CenterCrop(height=args.input_height, width=args.input_width, p=1)
        ],
        p=1)

    # train/valid filenames,
    # we evaluate and generate masks on validation set
    _, eval_filenames = utils.trainval_split(args.train_dir, fold)

    eval_num_workers = args.num_workers
    eval_batch_size = args.batch_size
    # additional ds args
    if 'TAPNet' in args.model:
        # in eval, num_workers should be set to 0 for sequences
        eval_num_workers = 0
        # in eval, batch_size should be set to 1 for sequences
        eval_batch_size = 1

    # additional eval dataset kws
    eval_ds_kwargs = {
        'filenames': eval_filenames,
        'problem_type': args.problem_type,
        'transform': eval_transform,
        'model': args.model,
        'mode': 'eval',
    }

    # valid dataloader
    eval_loader = DataLoader(
        dataset=RobotSegDataset(**eval_ds_kwargs),
        shuffle=False,  # in eval, no need to shuffle
        num_workers=eval_num_workers,
        batch_size=
        eval_batch_size,  # in valid time. have to use one image by one
        pin_memory=True)

    # process function for ignite engine
    def eval_step(engine, batch):
        with torch.no_grad():
            model.eval()
            #print("batch Keys-->", batch.keys())
            inputs = batch['input'].cuda(non_blocking=True)
            #targets = batch['target'].cuda(non_blocking=True)

            # additional arguments
            add_params = {}
            # for TAPNet, add attention maps
            if 'TAPNet' in args.model:
                add_params['attmap'] = batch['attmap'].cuda(non_blocking=True)

            outputs = model(inputs, **add_params)
            output_logsoftmax_np = torch.softmax(outputs, dim=1).cpu().numpy()
            # output_classes and target_classes: <b, h, w>
            output_classes = output_logsoftmax_np.argmax(axis=1)
            masks = (output_classes * factor).astype(np.uint8)
            #print(size(masks))

            return_dict = {
                'input_filename': batch['input_filename'],
                'mask': masks
            }

            if 'TAPNet' in args.model:
                # for TAPNet, update attention maps after each iteration
                eval_loader.dataset.update_attmaps(output_logsoftmax_np,
                                                   batch['idx'].numpy())
                # for TAPNet, return extra internal values
                return_dict['attmap'] = add_params['attmap']

            return return_dict
Esempio n. 4
0
def train_fold(fold, args):
    # loggers
    logging_logger = args.logging_logger
    if args.tb_log:
        tb_logger = args.tb_logger

    num_classes = utils.problem_class[args.problem_type]

    # init model
    model = eval(args.model)(in_channels=3, num_classes=num_classes, bn=False)
    model = nn.DataParallel(model, device_ids=args.device_ids).cuda()

    # transform for train/valid data
    train_transform, valid_transform = get_transform(args.model)

    # loss function
    loss_func = LossMulti(num_classes, args.jaccard_weight)
    if args.semi:
        loss_func_semi = LossMultiSemi(num_classes, args.jaccard_weight, args.semi_loss_alpha, args.semi_method)

    # train/valid filenames
    train_filenames, valid_filenames = utils.trainval_split(args.train_dir, fold)

    # DataLoader and Dataset args
    train_shuffle = True
    train_ds_kwargs = {
        'filenames': train_filenames,
        'problem_type': args.problem_type,
        'transform': train_transform,
        'model': args.model,
        'mode': 'train',
        'semi': args.semi,
    }

    valid_num_workers = args.num_workers
    valid_batch_size = args.batch_size
    if 'TAPNet' in args.model:
        # for TAPNet, cancel default shuffle, use self-defined shuffle in torch.Dataset instead
        train_shuffle = False
        train_ds_kwargs['batch_size'] = args.batch_size
        train_ds_kwargs['mf'] = args.mf
    if args.semi == True:
        train_ds_kwargs['semi_method'] = args.semi_method
        train_ds_kwargs['semi_percentage'] = args.semi_percentage

    # additional valid dataset kws
    valid_ds_kwargs = {
        'filenames': valid_filenames,
        'problem_type': args.problem_type,
        'transform': valid_transform,
        'model': args.model,
        'mode': 'valid',
    }

    if 'TAPNet' in args.model:
        # in validation, num_workers should be set to 0 for sequences
        valid_num_workers = 0
        # in validation, batch_size should be set to 1 for sequences
        valid_batch_size = 1
        valid_ds_kwargs['mf'] = args.mf

    # train dataloader
    train_loader = DataLoader(
        dataset=RobotSegDataset(**train_ds_kwargs),
        shuffle=train_shuffle, # set to False to disable pytorch dataset shuffle
        num_workers=args.num_workers,
        batch_size=args.batch_size,
        pin_memory=True
    )
    # valid dataloader
    valid_loader = DataLoader(
        dataset=RobotSegDataset(**valid_ds_kwargs),
        shuffle=False, # in validation, no need to shuffle
        num_workers=valid_num_workers,
        batch_size=valid_batch_size, # in valid time. have to use one image by one
        pin_memory=True
    )

    # optimizer
    optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, 
    #     weight_decay=args.weight_decay, nesterov=True)    

    # ignite trainer process function
    def train_step(engine, batch):
        # set model to train
        model.train()
        # clear gradients
        optimizer.zero_grad()
        
        # additional params to feed into model
        add_params = {}
        inputs = batch['input'].cuda(non_blocking=True)
        with torch.no_grad():
            targets = batch['target'].cuda(non_blocking=True)
            # for TAPNet, add attention maps
            if 'TAPNet' in args.model:
                add_params['attmap'] = batch['attmap'].cuda(non_blocking=True)

        outputs = model(inputs, **add_params)

        loss_kwargs = {}

        if args.semi:
            loss_kwargs['labeled'] = batch['labeled']
            if args.semi_method == 'rev_flow':
                loss_kwargs['optflow'] = batch['optflow']
            loss = loss_func_semi(outputs, targets, **loss_kwargs)
        else:
            loss = loss_func(outputs, targets, **loss_kwargs)
        loss.backward()
        optimizer.step()

        return_dict = {
            'output': outputs,
            'target': targets,
            'loss_kwargs': loss_kwargs,
            'loss': loss.item(),
        }

        # for TAPNet, update attention maps after each iteration
        if 'TAPNet' in args.model:
            # output_classes and target_classes: <b, h, w>
            output_softmax_np = torch.softmax(outputs, dim=1).detach().cpu().numpy()
            # update attention maps
            train_loader.dataset.update_attmaps(output_softmax_np, batch['abs_idx'].numpy())
            return_dict['attmap'] = add_params['attmap']

        return return_dict
    
    # init trainer
    trainer = engine.Engine(train_step)

    # lr scheduler and handler
    # cyc_scheduler = optim.lr_scheduler.CyclicLR(optimizer, args.lr / 100, args.lr)
    # lr_scheduler = c_handlers.param_scheduler.LRScheduler(cyc_scheduler)
    # trainer.add_event_handler(engine.Events.ITERATION_COMPLETED, lr_scheduler)

    step_scheduler = optim.lr_scheduler.StepLR(optimizer,
        step_size=args.lr_decay_epochs, gamma=args.lr_decay)
    lr_scheduler = c_handlers.param_scheduler.LRScheduler(step_scheduler)
    trainer.add_event_handler(engine.Events.EPOCH_STARTED, lr_scheduler)


    @trainer.on(engine.Events.STARTED)
    def trainer_start_callback(engine):
        logging_logger.info('training fold {}, {} train / {} valid files'. \
            format(fold, len(train_filenames), len(valid_filenames)))

        # resume training
        if args.resume:
            # ckpt for current fold fold_<fold>_model_<epoch>.pth
            ckpt_dir = Path(args.ckpt_dir)
            ckpt_filename = ckpt_dir.glob('fold_%d_model_[0-9]*.pth' % fold)[0]
            res = re.match(r'fold_%d_model_(\d+).pth' % fold, ckpt_filename)
            # restore epoch
            engine.state.epoch = int(res.groups()[0])
            # load model state dict
            model.load_state_dict(torch.load(str(ckpt_filename)))
            logging_logger.info('restore model [{}] from epoch {}.'.format(args.model, engine.state.epoch))
        else:
            logging_logger.info('train model [{}] from scratch'.format(args.model))

        # record metrics history every epoch
        engine.state.metrics_records = {}


    @trainer.on(engine.Events.EPOCH_STARTED)
    def trainer_epoch_start_callback(engine):
        # log learning rate on pbar
        train_pbar.log_message('model: %s, problem type: %s, fold: %d, lr: %.5f, batch size: %d' % \
            (args.model, args.problem_type, fold, lr_scheduler.get_param(), args.batch_size))
        
        # for TAPNet, change dataset schedule to random after the first epoch
        if 'TAPNet' in args.model and engine.state.epoch > 1:
            train_loader.dataset.set_dataset_schedule("shuffle")


    @trainer.on(engine.Events.ITERATION_COMPLETED)
    def trainer_iter_comp_callback(engine):
        # logging_logger.info(engine.state.metrics)
        pass

    # monitor loss
    # running average loss
    train_ra_loss = imetrics.RunningAverage(output_transform=
        lambda x: x['loss'], alpha=0.98)
    train_ra_loss.attach(trainer, 'train_ra_loss')

    # monitor train loss over epoch
    if args.semi:
        train_loss = imetrics.Loss(loss_func_semi, output_transform=lambda x: (x['output'], x['target'], x['loss_kwargs']))
    else:
        train_loss = imetrics.Loss(loss_func, output_transform=lambda x: (x['output'], x['target']))
    train_loss.attach(trainer, 'train_loss')

    # progress bar
    train_pbar = c_handlers.ProgressBar(persist=True, dynamic_ncols=True)
    train_metric_names = ['train_ra_loss']
    train_pbar.attach(trainer, metric_names=train_metric_names)

    # tensorboardX: log train info
    if args.tb_log:
        tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer, 'lr'), 
            event_name=engine.Events.EPOCH_STARTED)

        tb_logger.attach(trainer, log_handler=OutputHandler('train_iter', train_metric_names),
            event_name=engine.Events.ITERATION_COMPLETED)

        tb_logger.attach(trainer, log_handler=OutputHandler('train_epoch', ['train_loss']),
            event_name=engine.Events.EPOCH_COMPLETED)

        tb_logger.attach(trainer,
             log_handler=WeightsScalarHandler(model, reduction=torch.norm),
             event_name=engine.Events.ITERATION_COMPLETED)

        # tb_logger.attach(trainer, log_handler=tb_log_train_vars, 
        #     event_name=engine.Events.ITERATION_COMPLETED)


    # ignite validator process function
    def valid_step(engine, batch):
        with torch.no_grad():
            model.eval()
            inputs = batch['input'].cuda(non_blocking=True)
            targets = batch['target'].cuda(non_blocking=True)

            # additional arguments
            add_params = {}
            # for TAPNet, add attention maps
            if 'TAPNet' in args.model:
                add_params['attmap'] = batch['attmap'].cuda(non_blocking=True)

            # output logits
            outputs = model(inputs, **add_params)
            # loss
            loss = loss_func(outputs, targets)

            output_softmaxs = torch.softmax(outputs, dim=1)
            output_argmaxs = output_softmaxs.argmax(dim=1)
            # output_classes and target_classes: <b, h, w>
            output_classes = output_argmaxs.cpu().numpy()
            target_classes = targets.cpu().numpy()

            # record current batch metrics
            iou_mRecords = MetricRecord()
            dice_mRecords = MetricRecord()

            cm_b = np.zeros((num_classes, num_classes), dtype=np.uint32)

            for output_class, target_class in zip(output_classes, target_classes):
                # calculate metrics for each frame
                # calculate using confusion matrix or dirctly using definition
                cm = calculate_confusion_matrix_from_arrays(output_class, target_class, num_classes)
                iou_mRecords.update_record(calculate_iou(cm))
                dice_mRecords.update_record(calculate_dice(cm))
                cm_b += cm

                ######## calculate directly using definition ##########
                # iou_mRecords.update_record(iou_multi_np(target_class, output_class))
                # dice_mRecords.update_record(dice_multi_np(target_class, output_class))

            # accumulate batch metrics to engine state
            engine.state.epoch_metrics['confusion_matrix'] += cm_b
            engine.state.epoch_metrics['iou'].merge(iou_mRecords)
            engine.state.epoch_metrics['dice'].merge(dice_mRecords)


            return_dict = {
                'loss': loss.item(),
                'output': outputs,
                'output_argmax': output_argmaxs,
                'target': targets,
                # for monitoring
                'iou': iou_mRecords,
                'dice': dice_mRecords,
            }

            if 'TAPNet' in args.model:
                # for TAPNet, update attention maps after each iteration
                valid_loader.dataset.update_attmaps(output_softmaxs.cpu().numpy(), batch['abs_idx'].numpy())
                # for TAPNet, return extra internal values
                return_dict['attmap'] = add_params['attmap']
                # TODO: for TAPNet, return internal self-learned attention maps

            return return_dict


    # validator engine
    validator = engine.Engine(valid_step)

    # monitor loss
    valid_ra_loss = imetrics.RunningAverage(output_transform=
        lambda x: x['loss'], alpha=0.98)
    valid_ra_loss.attach(validator, 'valid_ra_loss')

    # monitor validation loss over epoch
    valid_loss = imetrics.Loss(loss_func, output_transform=lambda x: (x['output'], x['target']))
    valid_loss.attach(validator, 'valid_loss')
    
    # monitor <data> mean metrics
    valid_data_miou = imetrics.RunningAverage(output_transform=
        lambda x: x['iou'].data_mean()['mean'], alpha=0.98)
    valid_data_miou.attach(validator, 'mIoU')
    valid_data_mdice = imetrics.RunningAverage(output_transform=
        lambda x: x['dice'].data_mean()['mean'], alpha=0.98)
    valid_data_mdice.attach(validator, 'mDice')

    # show metrics on progress bar (after every iteration)
    valid_pbar = c_handlers.ProgressBar(persist=True, dynamic_ncols=True)
    valid_metric_names = ['valid_ra_loss', 'mIoU', 'mDice']
    valid_pbar.attach(validator, metric_names=valid_metric_names)


    # ## monitor ignite IoU (the same as iou we are using) ###
    # cm = imetrics.ConfusionMatrix(num_classes, 
    #     output_transform=lambda x: (x['output'], x['target']))
    # imetrics.IoU(cm, 
    #     ignore_index=0
    #     ).attach(validator, 'iou')

    # # monitor ignite mean iou (over all classes even not exist in gt)
    # mean_iou = imetrics.mIoU(cm, 
    #     ignore_index=0
    #     ).attach(validator, 'mean_iou')


    @validator.on(engine.Events.STARTED)
    def validator_start_callback(engine):
        pass

    @validator.on(engine.Events.EPOCH_STARTED)
    def validator_epoch_start_callback(engine):
        engine.state.epoch_metrics = {
            # directly use definition to calculate
            'iou': MetricRecord(),
            'dice': MetricRecord(),
            'confusion_matrix': np.zeros((num_classes, num_classes), dtype=np.uint32),
        }


    # evaluate after iter finish
    @validator.on(engine.Events.ITERATION_COMPLETED)
    def validator_iter_comp_callback(engine):
        pass

    # evaluate after epoch finish
    @validator.on(engine.Events.EPOCH_COMPLETED)
    def validator_epoch_comp_callback(engine):

        # log ignite metrics
        # logging_logger.info(engine.state.metrics)
        # ious = engine.state.metrics['iou']
        # msg = 'IoU: '
        # for ins_id, iou in enumerate(ious):
        #     msg += '{:d}: {:.3f}, '.format(ins_id + 1, iou)
        # logging_logger.info(msg)
        # logging_logger.info('nonzero mean IoU for all data: {:.3f}'.format(ious[ious > 0].mean()))

        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics

        ######### NOTICE: Two metrics are available but different ##########
        ### 1. mean metrics for all data calculated by confusion matrix ####

        '''
        compared with using confusion_matrix[1:, 1:] in original code,
        we use the full confusion matrix and only present non-background result
        '''
        confusion_matrix = epoch_metrics['confusion_matrix']# [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        std_ious = np.std(list(ious.values()))
        std_dices = np.std(list(dices.values()))

        logging_logger.info('mean IoU: %.3f, std: %.3f, for each class: %s' % 
            (mean_ious, std_ious, ious))
        logging_logger.info('mean Dice: %.3f, std: %.3f, for each class: %s' % 
            (mean_dices, std_dices, dices))


        ### 2. mean metrics for all data calculated by definition ###
        iou_data_mean = epoch_metrics['iou'].data_mean()
        dice_data_mean = epoch_metrics['dice'].data_mean()

        logging_logger.info('data (%d) mean IoU: %.3f, std: %.3f' %
            (len(iou_data_mean['items']), iou_data_mean['mean'], iou_data_mean['std']))
        logging_logger.info('data (%d) mean Dice: %.3f, std: %.3f' %
            (len(dice_data_mean['items']), dice_data_mean['mean'], dice_data_mean['std']))

        # record metrics in trainer every epoch
        # trainer.state.metrics_records[trainer.state.epoch] = \
        #     {'miou': mean_ious, 'std_miou': std_ious,
        #     'mdice': mean_dices, 'std_mdice': std_dices}
        
        trainer.state.metrics_records[trainer.state.epoch] = \
            {'miou': iou_data_mean['mean'], 'std_miou': iou_data_mean['std'],
            'mdice': dice_data_mean['mean'], 'std_mdice': dice_data_mean['std']}


    # log interal variables(attention maps, outputs, etc.) on validation
    def tb_log_valid_iter_vars(engine, logger, event_name):
        log_tag = 'valid_iter'
        output = engine.state.output
        batch_size = output['output'].shape[0]
        res_grid = tvutils.make_grid(torch.cat([
            output['output_argmax'].unsqueeze(1),
            output['target'].unsqueeze(1),
        ]), padding=2, 
        normalize=False, # show origin image
        nrow=batch_size).cpu()

        logger.writer.add_image(tag='%s (outputs, targets)' % (log_tag), img_tensor=res_grid)

        if 'TAPNet' in args.model:
            # log attention maps and other internal values
            inter_vals_grid = tvutils.make_grid(torch.cat([
                output['attmap'],
            ]), padding=2, normalize=True, nrow=batch_size).cpu()
            logger.writer.add_image(tag='%s internal vals' % (log_tag), img_tensor=inter_vals_grid)

    def tb_log_valid_epoch_vars(engine, logger, event_name):
        log_tag = 'valid_iter'
        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics
        confusion_matrix = epoch_metrics['confusion_matrix']# [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        logger.writer.add_scalar('mIoU', mean_ious, engine.state.epoch)
        logger.writer.add_scalar('mIoU', mean_dices, engine.state.epoch)



    if args.tb_log:
        # log internal values
        tb_logger.attach(validator, log_handler=tb_log_valid_iter_vars, 
            event_name=engine.Events.ITERATION_COMPLETED)
        tb_logger.attach(validator, log_handler=tb_log_valid_epoch_vars,
            event_name=engine.Events.EPOCH_COMPLETED)
        # tb_logger.attach(validator, log_handler=OutputHandler('valid_iter', valid_metric_names),
        #     event_name=engine.Events.ITERATION_COMPLETED)
        tb_logger.attach(validator, log_handler=OutputHandler('valid_epoch', ['valid_loss']),
            event_name=engine.Events.EPOCH_COMPLETED)


    # score function for model saving
    ckpt_score_function = lambda engine: \
        np.mean(list(calculate_iou(engine.state.epoch_metrics['confusion_matrix']).values()))
    # ckpt_score_function = lambda engine: engine.state.epoch_metrics['iou'].data_mean()['mean']
    
    ckpt_filename_prefix = 'fold_%d' % fold

    # model saving handler
    model_ckpt_handler = handlers.ModelCheckpoint(
        dirname=args.model_save_dir,
        filename_prefix=ckpt_filename_prefix, 
        score_function=ckpt_score_function,
        create_dir=True,
        require_empty=False,
        save_as_state_dict=True,
        atomic=True)


    validator.add_event_handler(event_name=engine.Events.EPOCH_COMPLETED, 
        handler=model_ckpt_handler,
        to_save={
            'model': model,
        })

    # early stop
    # trainer=trainer, but should be handled by validator
    early_stopping = handlers.EarlyStopping(patience=args.es_patience, 
        score_function=ckpt_score_function,
        trainer=trainer
        )

    validator.add_event_handler(event_name=engine.Events.EPOCH_COMPLETED,
        handler=early_stopping)


    # evaluate after epoch finish
    @trainer.on(engine.Events.EPOCH_COMPLETED)
    def trainer_epoch_comp_callback(engine):
        validator.run(valid_loader)

    trainer.run(train_loader, max_epochs=args.max_epochs)

    if args.tb_log:
        # close tb_logger
        tb_logger.close()

    return trainer.state.metrics_records
def process_fold(fold, args):
    num_classes = utils.problem_class[args.problem_type]
    factor = utils.problem_factor[args.problem_type]
    # inputs are RGB images (3 * h * w)
    # outputs are 2d multilabel segmentation maps (h * w)
    model = eval(args.model)(in_channels=3, num_classes=num_classes)
    # data parallel for multi-GPU
    model = nn.DataParallel(model, device_ids=args.device_ids).cuda()

    ckpt_dir = Path(args.ckpt_dir)
    #p = pathlib.Path(ckpt_dir)
    # ckpt for this fold fold_<fold>_model_<epoch>.pth
    print("ckpt_dir--> ", ckpt_dir)
    filenames = glob.glob(args.ckpt_dir + 'fold_%d_model_[0-99]*.pth' % fold)
    #filenames = glob.glob(args.ckpt_dir+'fold_%d_model_[0-99]*.pth')
    #filenames = ckpt_dir.glob(args.ckpt_dir+'fold_%d_model_[0-9]*.pth'%fold)

    print("Filename--> ", filenames)
    # if len(filenames) != 1:
    #    raise ValueError('invalid model ckpt name. correct ckpt name should be \
    #        fold_<fold>_model_<epoch>.pth')

    ckpt_filename = filenames[0]
    # load state dict
    model.load_state_dict(torch.load(str(ckpt_filename)))
    logging.info('Restored model [{}] fold {}.'.format(args.model, fold))

    # segmentation mask save directory
    mask_save_dir = Path(args.mask_save_dir) / ckpt_dir.name
    mask_save_dir.mkdir(exist_ok=True, parents=True)
    #print("mask_save_dir", mask_save_dir)

    eval_transform = Compose(
        [
            Normalize(p=1),
            PadIfNeeded(
                min_height=args.input_height, min_width=args.input_width, p=1),

            # optional
            Resize(height=args.input_height, width=args.input_width, p=1),
            # CenterCrop(height=args.input_height, width=args.input_width, p=1)
        ],
        p=1)

    # train/valid filenames,
    # we evaluate and generate masks on validation set
    train_filenames, valid_filenames = utils.trainval_split(
        args.train_dir, fold)

    eval_num_workers = args.num_workers
    eval_batch_size = args.batch_size
    # additional ds args
    if 'TAPNet' in args.model:
        # in eval, num_workers should be set to 0 for sequences
        eval_num_workers = 0
        # in eval, batch_size should be set to 1 for sequences
        eval_batch_size = 1

    # additional eval dataset kws
    eval_ds_kwargs = {
        'filenames': train_filenames,
        'problem_type': args.problem_type,
        'transform': eval_transform,
        'model': args.model,
        'mode': 'eval',
    }

    # valid dataloader
    eval_loader = DataLoader(
        dataset=RobotSegDataset(**eval_ds_kwargs),
        shuffle=False,  # in eval, no need to shuffle
        num_workers=eval_num_workers,
        batch_size=
        eval_batch_size,  # in valid time. have to use one image by one
        pin_memory=True)

    # process function for ignite engine
    def eval_step(engine, batch):
        with torch.no_grad():
            model.eval()
            #print("batch Keys-->", batch.keys())
            inputs = batch['input'].cuda(non_blocking=True)
            #targets = batch['target'].cuda(non_blocking=True)

            # additional arguments
            add_params = {}
            # for TAPNet, add attention maps
            if 'TAPNet' in args.model:
                add_params['attmap'] = batch['attmap'].cuda(non_blocking=True)

            outputs = model(inputs, **add_params)
            output_logsoftmax_np = torch.softmax(outputs, dim=1).cpu().numpy()
            # output_classes and target_classes: <b, h, w>
            output_classes = output_logsoftmax_np.argmax(axis=1)
            masks = (output_classes * factor).astype(np.uint8)
            #print(size(masks))

            return_dict = {
                'input_filename': batch['input_filename'],
                'mask': masks
            }

            if 'TAPNet' in args.model:
                # for TAPNet, update attention maps after each iteration
                eval_loader.dataset.update_attmaps(output_logsoftmax_np,
                                                   batch['idx'].numpy())
                # for TAPNet, return extra internal values
                return_dict['attmap'] = add_params['attmap']

            return return_dict

    # eval engine
    evaluator = engine.Engine(eval_step)

    eval_pbar = c_handlers.ProgressBar(persist=True, dynamic_ncols=True)
    #valid_pbar = c_handlers.ProgressBar(persist=True, dynamic_ncols=True)
    eval_pbar.attach(evaluator)

    # evaluate after iter finish

    @evaluator.on(engine.Events.ITERATION_COMPLETED)
    def evaluator_epoch_comp_callback(engine):
        global Average_batch_IoU
        # save masks for each batch
        batch_output = engine.state.output
        input_filenames = batch_output['input_filename']
        #print("Input_filenames--> ", input_filenames)
        masks = batch_output['mask']
        iou = []
        #Average_batch_IoU = []
        for i, input_filename in enumerate(input_filenames):
            mask = cv2.resize(masks[i],
                              dsize=(utils.cropped_width,
                                     utils.cropped_height),
                              interpolation=cv2.INTER_AREA)

            # if pad:
            #     h_start, w_start = utils.h_start, utils.w_start
            #     h, w = mask.shape
            #     # recover to original shape
            #     full_mask = np.zeros((original_height, original_width))
            #     full_mask[h_start:h_start + h, w_start:w_start + w] = t_mask
            #     mask = full_mask
            #print("Input Filename-->", input_filename)
            #img = cv2.imread(input_filename)
            #instrument_folder_name = input_filename.parent.parent.name
            instrument_folder_name = os.path.basename(
                os.path.dirname(os.path.dirname(input_filename)))
            #print("instrument_folder_name-->", instrument_folder_name)
            binary_mask = Path(args.type_mask)
            gt_folder = os.path.dirname(
                os.path.dirname(input_filename)) / binary_mask
            #print("gt_folder-->", gt_folder)
            gt_filename = gt_folder / os.path.basename(input_filename)
            #print("gt_filename-->", gt_filename)
            # mask_folder/instrument_dataset_x/problem_type_masks/framexxx.png
            mask_folder = mask_save_dir / instrument_folder_name / utils.mask_folder[
                args.problem_type]
            mask_folder.mkdir(exist_ok=True, parents=True)
            mask_filename = mask_folder / os.path.basename(input_filename)

            gt_mask = cv2.imread(str(gt_filename), cv2.CV_8UC1)
            #print("mask_filename-->", mask_filename)
            cv2.imwrite(str(mask_filename), mask)

            assert (mask.shape == gt_mask.shape)
            image_iou = get_iou(mask, gt_mask)
            if math.isnan(image_iou) == False:
                iou.append(image_iou)
                #print("IoU for image {} = {}".format(input_filename, iou[-1]))

            if 'TAPNet' in args.model:
                attmap = batch_output['attmap'][i]

                attmap_folder = mask_save_dir / instrument_folder_name / '_'.join(
                    args.problem_type, 'attmaps')
                attmap_folder.mkdir(exist_ok=True, parents=True)
                attmap_filename = attmap_folder / os.path.basename(
                    input_filename)

                cv2.imwrite(str(attmap_filename), attmap)
            #Average_batch_IoU.append(np.mean(iou))
        #Average_batch_IoU = list(np.mean(iou))
        Average_batch_IoU.append(np.nanmean(iou))
        #

    evaluator.run(eval_loader)
    print("Average_batch_IoU-->", np.nanmean(Average_batch_IoU))
    f.write(str(np.nanmean(Average_batch_IoU)))
    f.write('\n')
Esempio n. 6
0
def main(fold):
    # check cuda available
    assert torch.cuda.is_available() == True

    # when the input dimension doesnot change, add this flag to speed up
    cudnn.benchmark = True

    num_classes = config.problem_class[params.problem_type]
    # input are RGB images in size 3 * h * w
    # output are binary
    model = params.model(in_channels=3, num_classes=num_classes)
    # data parallel
    model = nn.DataParallel(model, device_ids=params.device_ids).cuda()
    # loss function
    if num_classes == 2:
        loss = LossBinary(jaccard_weight=params.jaccard_weight)
        valid_metric = validation_binary
    else:
        loss = LossMulti(num_classes=num_classes, jaccard_weight=params.jaccard_weight)
        valid_metric = validation_multi


    # trainset transform
    train_transform = Compose([
        Resize(height=params.train_height, width=params.train_width, p=1),
        Normalize(p=1)
    ], p=1)

    # validset transform
    valid_transform = Compose([
        Resize(height=params.valid_height, width=params.valid_width, p=1),
        Normalize(p=1)
    ], p=1)

    # train/valid filenmaes
    train_filenames, valid_filenames = trainval_split(fold)
    print('num of train / validation files = {} / {}'.format(len(train_filenames), len(valid_filenames)))

    # train dataloader
    train_loader = DataLoader(
        dataset=RobotSegDataset(train_filenames, transform=train_transform),
        shuffle=True,
        num_workers=params.num_workers,
        batch_size=params.batch_size,
        pin_memory=True
    )
    # valid dataloader
    valid_loader = DataLoader(
        dataset=RobotSegDataset(valid_filenames, transform=valid_transform),
        shuffle=True,
        num_workers=params.num_workers,
        batch_size=len(params.device_ids), # in valid time use one img for each dataset
        pin_memory=True
    )

    train(
        model=model,
        loss_func=loss,
        train_loader=train_loader,
        valid_loader=valid_loader,
        valid_metric=valid_metric,
        fold=fold,
        num_classes=num_classes
    )
Esempio n. 7
0
def main(fold):
    # check cuda available
    assert torch.cuda.is_available() == True

    # when the input dimension doesnot change, add this flag to speed up
    cudnn.benchmark = True

    num_classes = config.problem_class[params.problem_type]
    # input are RGB images in size 3 * h * w
    # output are binary
    model = params.model(in_channels=3, num_classes=num_classes)
    # data parallel
    model = nn.DataParallel(model, device_ids=params.device_ids).cuda()
    # loss function
    if num_classes == 2:
        loss = LossBinary(jaccard_weight=params.jaccard_weight)
        valid_metric = validation_binary
    else:
        loss = LossMulti(num_classes=num_classes,
                         jaccard_weight=params.jaccard_weight)
        valid_metric = validation_multi

    # trainset transform
    train_transform = Compose([
        Resize(height=params.train_height, width=params.train_width, p=1),
        Normalize(p=1),
        PadIfNeeded(
            min_height=params.train_height, min_width=params.train_width, p=1),
    ],
                              p=1)

    # validset transform
    valid_transform = Compose([
        PadIfNeeded(
            min_height=params.valid_height, min_width=params.valid_width, p=1),
        Resize(height=params.train_height, width=params.train_width, p=1),
        Normalize(p=1)
    ],
                              p=1)

    # train/valid filenmaes
    train_filenames, valid_filenames = trainval_split(fold)
    print('fold {}, {} train / {} validation files'.format(
        fold, len(train_filenames), len(valid_filenames)))

    # train dataloader
    train_loader = DataLoader(
        dataset=RobotSegDataset(train_filenames, transform=train_transform, \
            schedule="ordered", batch_size=params.batch_size, problem_type=params.problem_type, semi_percentage=params.semi_percentage),
        shuffle=False, # set to false to disable pytorch dataset shuffle
        num_workers=params.num_workers,
        batch_size=params.batch_size,
        pin_memory=True
    )
    # valid dataloader
    valid_loader = DataLoader(
        dataset=RobotSegDataset(valid_filenames,
                                transform=valid_transform,
                                problem_type=params.problem_type,
                                mode='valid'),
        shuffle=False,  # set to false to disable pytorch dataset shuffle
        num_workers=0,  # params.num_workers,
        batch_size=1,  # in valid time. have to use one image by one
        pin_memory=True)

    train(model=model,
          loss_func=loss,
          train_loader=train_loader,
          valid_loader=valid_loader,
          valid_metric=valid_metric,
          fold=fold,
          num_classes=num_classes)
Esempio n. 8
0
def eval(model, filenames, num_classes):
    # should set batch_size = 1
    batch_size = 1

    model.eval()
    # recover h and w
    factor = config.problem_factor[params.problem_type]
    original_height, original_width = config.original_height, config.original_width
    h_start, w_start = config.h_start, config.w_start

    transform = Compose([
        Resize(height=params.train_height, width=params.train_width, p=1),
        Normalize(p=1),
        PadIfNeeded(
            min_height=params.train_height, min_width=params.train_width, p=1)
    ],
                        p=1)

    dataloader = DataLoader(dataset=RobotSegDataset(
        filenames,
        transform=transform,
        mode='eval',
        problem_type=params.problem_type),
                            shuffle=False,
                            num_workers=0,
                            batch_size=batch_size,
                            pin_memory=True)

    with torch.no_grad():
        # init progress bar for each epoch
        tq = tqdm.tqdm(total=len(dataloader.dataset))
        tq.set_description("Predict [{}]".format(params.model.__name__))
        for batch_num, (idxs, filenames, inputs,
                        attmaps) in enumerate(dataloader):
            # no grad for targets
            inputs = inputs.cuda(non_blocking=True)
            attmaps = attmaps.cuda(non_blocking=True)
            outputs, am, am5, am4, am3, am2, am1 = model(inputs, attmaps)

            # update attention maps using prediction
            dataloader.dataset.update_attmaps(outputs.cpu(), idxs)

            for i, filename in enumerate(filenames):
                # binary
                if num_classes == 2:
                    t_mask = ((outputs[i, 0] > 0).data.cpu().numpy() *
                              factor).astype(np.uint8)
                else:
                    t_mask = (outputs[i].data.cpu().numpy().argmax(axis=0) *
                              factor).astype(np.uint8)

                t_mask = cv2.resize(t_mask,
                                    dsize=(config.cropped_width,
                                           config.cropped_height),
                                    interpolation=cv2.INTER_AREA)
                # generate mask
                h, w = t_mask.shape
                # recover to original shape
                full_mask = np.zeros((original_height, original_width))
                full_mask[h_start:h_start + h, w_start:w_start + w] = t_mask

                # not recover
                # full_mask = t_mask[0]

                prediction_folder = Path(filenames[i]).parent.parent / \
                    'prediction' / params.problem_type

                prediction_folder.mkdir(exist_ok=True, parents=True)

                cv2.imwrite(
                    str(prediction_folder /
                        (Path(filenames[i]).stem + '.png')), full_mask)

                attmaps_folder = Path(filenames[i]).parent.parent / \
                    'attmaps' / params.problem_type

                if num_classes == 2:
                    sigmoid_output = (
                        torch.sigmoid(outputs[i, 0]).data.cpu().numpy() *
                        255).astype(np.uint8)
                else:
                    sigmoid_output = (
                        (1 - outputs[i, 0].exp()).data.cpu().numpy() *
                        255).astype(np.uint8)

                attmaps_folder.mkdir(exist_ok=True, parents=True)

                cv2.imwrite(
                    str(attmaps_folder /
                        (Path(filenames[i]).stem + '_sig.png')),
                    sigmoid_output)

                cv2.imwrite(
                    str(attmaps_folder /
                        (Path(filenames[i]).stem + '_am.png')),
                    norm_attmap(attmaps[i].cpu().numpy().squeeze()))
                cv2.imwrite(
                    str(attmaps_folder /
                        (Path(filenames[i]).stem + '_am_.png')),
                    norm_attmap(am[i].cpu().numpy().squeeze()))
                cv2.imwrite(
                    str(attmaps_folder /
                        (Path(filenames[i]).stem + '_am5.png')),
                    norm_attmap(am5[i].cpu().numpy().squeeze()))
                cv2.imwrite(
                    str(attmaps_folder /
                        (Path(filenames[i]).stem + '_am4.png')),
                    norm_attmap(am4[i].cpu().numpy().squeeze()))
                cv2.imwrite(
                    str(attmaps_folder /
                        (Path(filenames[i]).stem + '_am3.png')),
                    norm_attmap(am3[i].cpu().numpy().squeeze()))
                cv2.imwrite(
                    str(attmaps_folder /
                        (Path(filenames[i]).stem + '_am2.png')),
                    norm_attmap(am2[i].cpu().numpy().squeeze()))
                cv2.imwrite(
                    str(attmaps_folder /
                        (Path(filenames[i]).stem + '_am1.png')),
                    norm_attmap(am1[i].cpu().numpy().squeeze()))
                # cv2.imwrite(str(attmaps_folder / (Path(filenames[i]).stem + '_am4.png')), cv2.equalizeHist((am4[i].cpu().numpy().squeeze() * 255).astype(np.uint8)))
                # cv2.imwrite(str(attmaps_folder / (Path(filenames[i]).stem + '_am3.png')), cv2.equalizeHist((am3[i].cpu().numpy().squeeze() * 255).astype(np.uint8)))
                # cv2.imwrite(str(attmaps_folder / (Path(filenames[i]).stem + '_am2.png')), cv2.equalizeHist((am2[i].cpu().numpy().squeeze() * 255).astype(np.uint8)))
                # cv2.imwrite(str(attmaps_folder / (Path(filenames[i]).stem + '_am1.png')), cv2.equalizeHist((am1[i].cpu().numpy().squeeze() * 255).astype(np.uint8)))

            tq.update(batch_size)
        tq.close()