def initialize_mnist(self): # This method is provided as an example of how to use the provided # initialize_dataset method for a given set of data with known shapes. import sys sys.path.append("..") from datasets.Load import mnist trX, trY, teX, teY = mnist(onehot = True) shape_dict = { "w1": (32, 1, 3, 3), "w2": (64, 32, 3, 3), "w3": (128, 64, 3, 3), "w4": (128 * 3 * 3, 625), "wo": (625, 10) } self.initialize_dataset(trX, trY, teX, teY, shape_dict) return self
for o in parser.option_list ]) length_help = max([len(o.help) for o in parser.option_list]) print("\n" + parser.description + "\n") for option in parser.option_list: print(" {0: <{1}} {2: <{3}} (default: {4})".format( ", ".join(option._short_opts + option._long_opts), length_name, option.help, length_help, option.default)) print("") sys.exit() if options.clock: start = time.time() # load data trX09, trY09, teX09, teY09 = mnist(onehot=False) # prep training data trX08, trY08, trX_9, trY_9 = remove_class(trX09, trY09, 9) trX07, trY07, trX_8, trY_8 = remove_class(trX08, trY08, 8) # prep testing data teX08, teY08, teX_9, teY_9 = remove_class(teX09, teY09, 9) teX07, teY07, teX_8, teY_8 = remove_class(teX08, teY08, 8) # initialize, train, and evaluate multi-net model on classes 0-7 print("Batch training model on starting tasks 0-7...") mnm = MultiNetModel(options.mode).train(trX07, trY07, epochs=options.epochs, verbose=options.verbose)
import numpy as np import sys sys.path.append("..") from convnet import ConvolutionalNeuralNetwork from datasets.Load import mnist, cifar10 if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: {filename} <dataset>".format( filename=sys.argv[0].split("/")[-1])) sys.exit(1) dataset = sys.argv[1].lower() if dataset == "mnist": trX, trY, teX, teY = mnist(onehot=True) shape_dict = { "w1": (32, 1, 3, 3), "w2": (64, 32, 3, 3), "w3": (128, 64, 3, 3), "w4": (128 * 3 * 3, 625), "wo": (625, 10) } elif dataset == "cifar": trX, trY, teX, teY = cifar10(onehot=True) shape_dict = { "w1": (32, 1, 3, 3), "w2": (64, 32, 3, 3), "w3": (128, 64, 3, 3), "w4": (128 * 3 * 3, 841),
# custom help message if options.help: length_name = max([len(", ".join(o._short_opts + o._long_opts)) for o in parser.option_list]) length_help = max([len(o.help) for o in parser.option_list]) print("\n" + parser.description + "\n") for option in parser.option_list: print(" {0: <{1}} {2: <{3}} (default: {4})".format(", ".join(option._short_opts + option._long_opts), length_name, option.help, length_help, option.default)) print("") sys.exit() if options.clock: start = time.time() # load data trX09, trY09, teX09, teY09 = mnist(onehot = False) # prep training data trX08, trY08, trX_9, trY_9 = remove_class(trX09, trY09, 9) trX07, trY07, trX_8, trY_8 = remove_class(trX08, trY08, 8) # prep testing data teX08, teY08, teX_9, teY_9 = remove_class(teX09, teY09, 9) teX07, teY07, teX_8, teY_8 = remove_class(teX08, teY08, 8) # initialize, train, and evaluate multi-net model on classes 0-7 print("Batch training model on starting tasks 0-7...") mnm = MultiNetModel(options.mode).train(trX07, trY07, epochs = options.epochs, verbose = options.verbose) if options.test: for t in range(8): print("Accuracy on task {0}: {1:0.04f}".format(t, mnm.test(teX07, teY07, t)))
import numpy as np import sys sys.path.append("..") from convnet import ConvolutionalNeuralNetwork from datasets.Load import mnist, cifar10 if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: {filename} <dataset>".format(filename = sys.argv[0].split("/")[-1])) sys.exit(1) dataset = sys.argv[1].lower() if dataset == "mnist": trX, trY, teX, teY = mnist(onehot = True) shape_dict = { "w1": (32, 1, 3, 3), "w2": (64, 32, 3, 3), "w3": (128, 64, 3, 3), "w4": (128 * 3 * 3, 625), "wo": (625, 10) } elif dataset == "cifar": trX, trY, teX, teY = cifar10(onehot = True) shape_dict = { "w1": (32, 1, 3, 3), "w2": (64, 32, 3, 3), "w3": (128, 64, 3, 3), "w4": (128 * 3 * 3, 841),