Esempio n. 1
0
    def _process_wave(self, wav_file, num_frames):
        try:
            wav = audio.load_wav(wav_file, sr=audio_hparams.sample_rate)
        except FileNotFoundError:
            print(
                'file {} present in csv metadata is not present in wav folder. skipping!'
                .format(wav_file))

        if audio_hparams.trim_silence:
            wav = audio.trim_silence(wav, audio_hparams)

        expect_len = num_frames * audio_hparams.hop_size + audio_hparams.win_size
        if len(wav) < expect_len:
            wav = np.concatenate([wav] * np.math.ceil(expect_len / len(wav)))

        if len(wav) > expect_len:
            sp = random.randint(0, len(wav) - expect_len)
            wav = wav[sp:sp + expect_len]

        wav = audio.preemphasis(wav, audio_hparams.preemphasis,
                                audio_hparams.preemphasize)

        if audio_hparams.rescale:
            wav = wav / np.abs(wav).max() * audio_hparams.rescaling_max

        mels = audio.melspectrogram(wav, audio_hparams).astype(np.float32).T
        return mels
Esempio n. 2
0
def _process_utterance(mel_dir, linear_dir, wav_dir, index, wav_path, text, hparams):
    """
    Preprocesses a single utterance wav/text pair

    this writes the mel scale spectogram to disk and return a tuple to write
    to the train.txt file

    Args:
        - mel_dir: the directory to write the mel spectograms into
        - linear_dir: the directory to write the linear spectrograms into
        - wav_dir: the directory to write the preprocessed wav into
        - index: the numeric index to use in the spectogram filename
        - wav_path: path to the audio file containing the speech input
        - text: text spoken in the input audio file
        - hparams: hyper parameters

    Returns:
        - A tuple: (audio_filename, mel_filename, linear_filename, time_steps, mel_frames, linear_frames, text)
    """
    try:
        # Load the audio as numpy array
        wav = audio.load_wav(wav_path, sr=hparams.sample_rate)
    except FileNotFoundError: #catch missing wav exception
        print('file {} present in csv metadata is not present in wav folder. skipping!'.format(
            wav_path))
        return None

    #Trim lead/trail silences
    if hparams.trim_silence:
        wav = audio.trim_silence(wav, hparams)

    #Pre-emphasize
    preem_wav = audio.preemphasis(wav, hparams.preemphasis, hparams.preemphasize)

    #rescale wav
    if hparams.rescale:
        wav = wav / np.abs(wav).max() * hparams.rescaling_max
        preem_wav = preem_wav / np.abs(preem_wav).max() * hparams.rescaling_max

        #Assert all audio is in [-1, 1]
        if (wav > 1.).any() or (wav < -1.).any():
            raise RuntimeError('wav has invalid value: {}'.format(wav_path))
        if (preem_wav > 1.).any() or (preem_wav < -1.).any():
            raise RuntimeError('wav has invalid value: {}'.format(wav_path))

    #Mu-law quantize
    if is_mulaw_quantize(hparams.input_type):
        #[0, quantize_channels)
        out = mulaw_quantize(wav, hparams.quantize_channels)

        #Trim silences
        start, end = audio.start_and_end_indices(out, hparams.silence_threshold)
        wav = wav[start: end]
        preem_wav = preem_wav[start: end]
        out = out[start: end]

        constant_values = mulaw_quantize(0, hparams.quantize_channels)
        out_dtype = np.int16

    elif is_mulaw(hparams.input_type):
        #[-1, 1]
        out = mulaw(wav, hparams.quantize_channels)
        constant_values = mulaw(0., hparams.quantize_channels)
        out_dtype = np.float32

    else:
        #[-1, 1]
        out = wav
        constant_values = 0.
        out_dtype = np.float32

    # Compute the mel scale spectrogram from the wav
    mel_spectrogram = audio.melspectrogram(preem_wav, hparams).astype(np.float32)
    mel_frames = mel_spectrogram.shape[1]

    if mel_frames > hparams.max_mel_frames and hparams.clip_mels_length:
        return None

    #Compute the linear scale spectrogram from the wav
    linear_spectrogram = audio.linearspectrogram(preem_wav, hparams).astype(np.float32)
    linear_frames = linear_spectrogram.shape[1]

    #sanity check
    assert linear_frames == mel_frames

    if hparams.use_lws:
        #Ensure time resolution adjustement between audio and mel-spectrogram
        fft_size = hparams.n_fft if hparams.win_size is None else hparams.win_size
        l, r = audio.pad_lr(wav, fft_size, audio.get_hop_size(hparams))

        #Zero pad audio signal
        out = np.pad(out, (l, r), mode='constant', constant_values=constant_values)
    else:
        #Ensure time resolution adjustement between audio and mel-spectrogram
        l_pad, r_pad = audio.librosa_pad_lr(wav, hparams.n_fft, audio.get_hop_size(hparams), hparams.wavenet_pad_sides)

        #Reflect pad audio signal on the right (Just like it's done in Librosa to avoid frame inconsistency)
        out = np.pad(out, (l_pad, r_pad), mode='constant', constant_values=constant_values)

    assert len(out) >= mel_frames * audio.get_hop_size(hparams)

    #time resolution adjustement
    #ensure length of raw audio is multiple of hop size so that we can use
    #transposed convolution to upsample
    out = out[:mel_frames * audio.get_hop_size(hparams)]
    assert len(out) % audio.get_hop_size(hparams) == 0
    time_steps = len(out)

    # Write the spectrogram and audio to disk
    audio_filename = 'audio-{}.npy'.format(index)
    mel_filename = 'mel-{}.npy'.format(index)
    linear_filename = 'linear-{}.npy'.format(index)
    np.save(os.path.join(wav_dir, audio_filename), out.astype(out_dtype), allow_pickle=False)
    np.save(os.path.join(mel_dir, mel_filename), mel_spectrogram.T, allow_pickle=False)
    np.save(os.path.join(linear_dir, linear_filename), linear_spectrogram.T, allow_pickle=False)

    # Return a tuple describing this training example
    return (audio_filename, mel_filename, linear_filename, time_steps, mel_frames, text)
Esempio n. 3
0
def re_save_all(wav_path, audio_filename, mel_filename, linear_filename):

    try:
        # Load the audio as numpy array
        aud = audio.load_audio(wav_path, sr=hparams.sample_rate)
    except FileNotFoundError:  #catch missing wav exception
        print(
            'file {} present in csv metadata is not present in wav folder. skipping!'
            .format(wav_path))
        return None
    #Trim lead/trail silences
    if hparams.trim_silence:
        aud = audio.trim_silence(aud, hparams)

    #Pre-emphasize
    preem_aud = audio.preemphasis(aud, hparams.preemphasis,
                                  hparams.preemphasize)

    #rescale audio
    if hparams.rescale:
        aud = aud / np.abs(aud).max() * hparams.rescaling_max
        preem_aud = preem_aud / np.abs(preem_aud).max() * hparams.rescaling_max

        #Assert all audio is in [-1, 1]
        if (aud > 1.).any() or (aud < -1.).any():
            raise RuntimeError('audio has invalid value: {}'.format(wav_path))
        if (preem_aud > 1.).any() or (preem_aud < -1.).any():
            raise RuntimeError('audio has invalid value: {}'.format(wav_path))

    #[-1, 1]
    out = aud
    constant_values = 0.
    out_dtype = np.float32

    # Compute the mel scale spectrogram from the audio
    mel_spectrogram = audio.melspectrogram(preem_aud,
                                           hparams).astype(np.float32)
    mel_frames = mel_spectrogram.shape[1]

    #Compute the linear scale spectrogram from the audui
    linear_spectrogram = audio.linearspectrogram(preem_aud,
                                                 hparams).astype(np.float32)
    linear_frames = linear_spectrogram.shape[1]

    #sanity check
    assert linear_frames == mel_frames

    #Ensure time resolution adjustement between audio and mel-spectrogram
    l_pad, r_pad = audio.librosa_pad_lr(aud, hparams.n_fft,
                                        audio.get_hop_size(hparams),
                                        hparams.wavenet_pad_sides)

    #Reflect pad audio signal on the right (Just like it's done in Librosa to avoid frame inconsistency)
    out = np.pad(out, (l_pad, r_pad),
                 mode='constant',
                 constant_values=constant_values)

    assert len(out) >= mel_frames * audio.get_hop_size(hparams)

    #time resolution adjustement
    #ensure length of raw audio is multiple of hop size so that we can use
    #transposed convolution to upsample
    out = out[:mel_frames * audio.get_hop_size(hparams)]
    assert len(out) % audio.get_hop_size(hparams) == 0

    # Write the spectrogram and audio to disk
    np.save(audio_filename, out.astype(out_dtype), allow_pickle=False)
    np.save(mel_filename, mel_spectrogram.T, allow_pickle=False)
    np.save(linear_filename, linear_spectrogram.T, allow_pickle=False)
Esempio n. 4
0
def _process_utterance(out_dir, index, wav_path, text, hparams):
    """
    Preprocesses a single utterance wav/text pair

    this writes the mel scale spectogram to disk and return a tuple to write
    to the train.txt file

    Args:
        - out_dir: the directory to write the msgpack into
        - index: the numeric index to use in the spectogram filename
        - wav_path: path to the audio file containing the speech input
        - text: text spoken in the input audio file
        - hparams: hyper parameters

    Returns:
        - A tuple: (audio_filename, mel_filename, linear_filename, time_steps, mel_frames, linear_frames, text)
    """
    try:
        # Load the audio as numpy array
        wav = audio.load_wav(wav_path, sr=hparams.sample_rate)
    except FileNotFoundError:  # catch missing wav exception
        print('file {} present in csv metadata is not present in wav folder. skipping!'.format(
            wav_path))
        return None

    # Trim lead/trail silences
    if hparams.trim_silence:
        wav = audio.trim_silence(wav, hparams)

    # Pre-emphasize
    preem_wav = audio.preemphasis(wav, hparams.preemphasis, hparams.preemphasize)

    # rescale wav
    if hparams.rescale:
        wav = wav / np.abs(wav).max() * hparams.rescaling_max
        preem_wav = preem_wav / np.abs(preem_wav).max() * hparams.rescaling_max

        # Assert all audio is in [-1, 1]
        if (wav > 1.).any() or (wav < -1.).any():
            raise RuntimeError('wav has invalid value: {}'.format(wav_path))
        if (preem_wav > 1.).any() or (preem_wav < -1.).any():
            raise RuntimeError('wav has invalid value: {}'.format(wav_path))

    # [-1, 1]
    out = wav
    constant_values = 0.
    out_dtype = np.float32

    # Compute the mel scale spectrogram from the wav
    mel_spectrogram = audio.melspectrogram(preem_wav, hparams).astype(np.float32)
    mel_frames = mel_spectrogram.shape[1]

    if mel_frames > hparams.max_mel_frames and hparams.clip_mels_length:
        return None

    # Compute the linear scale spectrogram from the wav
    linear_spectrogram = audio.linearspectrogram(preem_wav, hparams).astype(np.float32)
    linear_frames = linear_spectrogram.shape[1]

    # sanity check
    assert linear_frames == mel_frames

    # Ensure time resolution adjustement between audio and mel-spectrogram
    l_pad, r_pad = audio.librosa_pad_lr(wav, audio.get_hop_size(hparams), hparams.pad_sides)

    # Reflect pad audio signal on the right (Just like it's done in Librosa to avoid frame inconsistency)
    out = np.pad(out, (l_pad, r_pad), mode='constant', constant_values=constant_values)

    assert len(out) >= mel_frames * audio.get_hop_size(hparams)

    # time resolution adjustement
    # ensure length of raw audio is multiple of hop size so that we can use
    # transposed convolution to upsample
    out = out[:mel_frames * audio.get_hop_size(hparams)]
    assert len(out) % audio.get_hop_size(hparams) == 0
    time_steps = len(out)
    npz_filename = '{}.npz'.format(index)
    r = hparams.outputs_per_step
    if hparams.symmetric_mels:
        _pad_value = -hparams.max_abs_value
    else:
        _pad_value = 0.
    # +2r for head and tail silence
    mel_spec = np.pad(mel_spectrogram.T, [[r, r], [0, 0]], 'constant', constant_values=_pad_value)
    linear_spec = np.pad(linear_spectrogram.T, [[r, r], [0, 0]], 'constant', constant_values=_pad_value)
    target_length = len(linear_spec)
    target_frames = (target_length // r + 1) * r
    num_pad = target_frames - target_length
    if num_pad != 0:
        linear_spec = np.pad(linear_spec, ((0, num_pad), (0, 0)), "constant", constant_values=_pad_value)
        mel_spec = np.pad(mel_spec, ((0, num_pad), (0, 0)), "constant", constant_values=_pad_value)
    stop_token = np.concatenate(
        [np.zeros(target_frames - 1, dtype=np.float32), np.ones(1, dtype=np.float32)],
        axis=0)
    data = {
        'mel': mel_spec,
        'linear': linear_spec,
        'audio': out.astype(out_dtype),
        'input_data': np.asarray(text_to_sequence(text)),
        'time_steps': time_steps,
        'mel_frames': target_frames,
        'text': text,
        'stop_token': stop_token,
    }
    dumps_msgpack(data, os.path.join(out_dir, npz_filename))
    # Return a tuple describing this training example
    return npz_filename, time_steps, mel_frames, text