from datasets.data_normalizer import DataNormalizer as Normalizer from datasets.evaluate_classifier import EvaluateClassifier if __name__ == '__main__': data = Normalizer('./bank-marketing.data').ready_data x = data[:, 0:len(data[0]) - 1] y = data[:, len(data[0]) - 1] y.shape = (len(x), ) EvaluateClassifier(x, y)
from datasets.data_normalizer import DataNormalizer as Normalizer from datasets.evaluate_classifier import EvaluateClassifier if __name__ == '__main__': data = Normalizer('./car-evaluation.data').ready_data x = data[:, 0:len(data[0]) - 1] y = data[:, len(data[0]) - 1] y.shape = (len(x), ) EvaluateClassifier(x, y)
from datasets.data_normalizer import DataNormalizer as Normalizer from datasets.evaluate_classifier import EvaluateClassifier if __name__ == '__main__': data = Normalizer('./wine-quality.data').ready_data x = data[:, 0:len(data[0])-1] y = data[:, len(data[0])-1] y.shape = (len(x),) EvaluateClassifier(x, y)
from datasets.data_normalizer import DataNormalizer as Normalizer from datasets.evaluate_classifier import EvaluateClassifier if __name__ == '__main__': data = Normalizer('./adult.data').ready_data x = data[:, 0:len(data[0]) - 1] y = data[:, len(data[0]) - 1] y.shape = (len(x), ) EvaluateClassifier(x, y)
from datasets.data_normalizer import DataNormalizer as Normalizer from datasets.evaluate_classifier import EvaluateClassifier if __name__ == '__main__': data = Normalizer('./breast-cancer-wisconsin.data').ready_data x = data[:, 0:len(data[0]) - 1] y = data[:, len(data[0]) - 1] y.shape = (len(x), ) EvaluateClassifier(x, y)
from datasets.data_normalizer import DataNormalizer as Normalizer from datasets.evaluate_classifier import EvaluateClassifier if __name__ == '__main__': data = Normalizer('./heart-disease.data').ready_data x = data[:, 0:len(data[0])-1] y = data[:, len(data[0])-1] y.shape = (len(x),) EvaluateClassifier(x, y)
from datasets.data_normalizer import DataNormalizer as Normalizer from datasets.evaluate_classifier import EvaluateClassifier if __name__ == '__main__': data = Normalizer('./tic-tac-toe.data').ready_data x = data[:, 0:len(data[0]) - 1] y = data[:, len(data[0]) - 1] y.shape = (len(x), ) EvaluateClassifier(x, y)
from datasets.data_normalizer import DataNormalizer as Normalizer from datasets.evaluate_classifier import EvaluateClassifier if __name__ == '__main__': data = Normalizer('./wine.data').ready_data x = data[:, 1:] y = data[:, 0] y.shape = (len(x), ) EvaluateClassifier(x, y)
from datasets.data_normalizer import DataNormalizer as Normalizer from datasets.evaluate_classifier import EvaluateClassifier if __name__ == '__main__': data = Normalizer('./iris.data').ready_data x = data[:, 0:len(data[0]) - 1] y = data[:, len(data[0]) - 1] y.shape = (len(x), ) EvaluateClassifier(x, y)