Esempio n. 1
0
from datasets.data_normalizer import DataNormalizer as Normalizer
from datasets.evaluate_classifier import EvaluateClassifier

if __name__ == '__main__':

    data = Normalizer('./bank-marketing.data').ready_data

    x = data[:, 0:len(data[0]) - 1]
    y = data[:, len(data[0]) - 1]
    y.shape = (len(x), )

    EvaluateClassifier(x, y)
Esempio n. 2
0
from datasets.data_normalizer import DataNormalizer as Normalizer
from datasets.evaluate_classifier import EvaluateClassifier

if __name__ == '__main__':

    data = Normalizer('./car-evaluation.data').ready_data

    x = data[:, 0:len(data[0]) - 1]
    y = data[:, len(data[0]) - 1]
    y.shape = (len(x), )

    EvaluateClassifier(x, y)
Esempio n. 3
0
from datasets.data_normalizer import DataNormalizer as Normalizer
from datasets.evaluate_classifier import EvaluateClassifier


if __name__ == '__main__':

    data = Normalizer('./wine-quality.data').ready_data

    x = data[:, 0:len(data[0])-1]
    y = data[:, len(data[0])-1]
    y.shape = (len(x),)

    EvaluateClassifier(x, y)
Esempio n. 4
0
from datasets.data_normalizer import DataNormalizer as Normalizer
from datasets.evaluate_classifier import EvaluateClassifier

if __name__ == '__main__':

    data = Normalizer('./adult.data').ready_data

    x = data[:, 0:len(data[0]) - 1]
    y = data[:, len(data[0]) - 1]
    y.shape = (len(x), )

    EvaluateClassifier(x, y)
Esempio n. 5
0
from datasets.data_normalizer import DataNormalizer as Normalizer
from datasets.evaluate_classifier import EvaluateClassifier

if __name__ == '__main__':

    data = Normalizer('./breast-cancer-wisconsin.data').ready_data

    x = data[:, 0:len(data[0]) - 1]
    y = data[:, len(data[0]) - 1]
    y.shape = (len(x), )

    EvaluateClassifier(x, y)
Esempio n. 6
0
from datasets.data_normalizer import DataNormalizer as Normalizer
from datasets.evaluate_classifier import EvaluateClassifier


if __name__ == '__main__':

    data = Normalizer('./heart-disease.data').ready_data

    x = data[:, 0:len(data[0])-1]
    y = data[:, len(data[0])-1]
    y.shape = (len(x),)

    EvaluateClassifier(x, y)
Esempio n. 7
0
from datasets.data_normalizer import DataNormalizer as Normalizer
from datasets.evaluate_classifier import EvaluateClassifier

if __name__ == '__main__':

    data = Normalizer('./tic-tac-toe.data').ready_data

    x = data[:, 0:len(data[0]) - 1]
    y = data[:, len(data[0]) - 1]
    y.shape = (len(x), )

    EvaluateClassifier(x, y)
Esempio n. 8
0
from datasets.data_normalizer import DataNormalizer as Normalizer
from datasets.evaluate_classifier import EvaluateClassifier

if __name__ == '__main__':

    data = Normalizer('./wine.data').ready_data

    x = data[:, 1:]
    y = data[:, 0]
    y.shape = (len(x), )

    EvaluateClassifier(x, y)
Esempio n. 9
0
from datasets.data_normalizer import DataNormalizer as Normalizer
from datasets.evaluate_classifier import EvaluateClassifier

if __name__ == '__main__':

    data = Normalizer('./iris.data').ready_data

    x = data[:, 0:len(data[0]) - 1]
    y = data[:, len(data[0]) - 1]
    y.shape = (len(x), )

    EvaluateClassifier(x, y)