def get_validation_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['jester', 'egogesture', 'nv'] if opt.dataset == 'jester': validation_data = Jester(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'egogesture': validation_data = EgoGesture(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'nv': validation_data = NV(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) return validation_data
def get_test_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['jester', 'egogesture', 'nv', 'sc', 'ems'] assert opt.test_subset in ['val', 'test'] if opt.test_subset == 'val': subset = 'validation' else: subset = 'testing' if opt.dataset == 'ems': test_data = EMS(opt.video_path, opt.annotation_path, subset, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'sc': test_data = Jester(opt.video_path, opt.annotation_path, subset, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'jester': test_data = Jester(opt.video_path, opt.annotation_path, subset, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'egogesture': test_data = EgoGesture(opt.video_path, opt.annotation_path, subset, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'nv': test_data = NV(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) return test_data
def get_training_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in [ 'kinetics', 'jester', 'ucf101', 'egogesture', 'nvgesture' ] if opt.train_validate: subset = ['training', 'validation'] else: subset = 'training' if opt.dataset == 'kinetics': training_data = Kinetics(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'jester': training_data = Jester(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': training_data = UCF101(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'egogesture': training_data = EgoGesture(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'nvgesture': training_data = NV(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) return training_data
def get_training_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['jester', 'nv', 'ipn'] if opt.train_validate: subset = ['training', 'validation'] else: subset = 'training' if opt.dataset == 'jester': training_data = Jester(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'egogesture': training_data = EgoGesture(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'nv': training_data = NV(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'ipn': training_data = IPN(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'denso': training_data = Denso(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality, no_subject_crop=opt.no_scrop) elif opt.dataset == 'AHG': training_data = AHG(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality, no_subject_crop=opt.no_scrop) return training_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['jester', 'nv', 'ipn'] if opt.dataset == 'jester': validation_data = Jester(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'egogesture': validation_data = EgoGesture(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'nv': validation_data = NV(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'ipn': validation_data = IPN(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'denso': validation_data = Denso(opt.video_path, opt.annotation_path, 'validation', true_valid=opt.true_valid, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality, no_subject_crop=opt.no_scrop) elif opt.dataset == 'AHG': validation_data = AHG(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality, no_subject_crop=opt.no_scrop) return validation_data