def test_download_and_prepare_with_post_process(self): def _post_process(self, dataset, resources_paths): def char_tokenize(example): return {"tokens": list(example["text"])} return dataset.map( char_tokenize, cache_file_name=resources_paths["tokenized_dataset"]) def _post_processing_resources(self, split): return { "tokenized_dataset": "tokenized_dataset-{split}.arrow".format(split=split) } with tempfile.TemporaryDirectory() as tmp_dir: dummy_builder = DummyBuilder(cache_dir=tmp_dir, name="dummy") dummy_builder.info.post_processed = PostProcessedInfo( features=Features({ "text": Value("string"), "tokens": [Value("string")] })) dummy_builder._post_process = types.MethodType( _post_process, dummy_builder) dummy_builder._post_processing_resources = types.MethodType( _post_processing_resources, dummy_builder) dummy_builder.download_and_prepare(try_from_hf_gcs=False, download_mode=FORCE_REDOWNLOAD) self.assertTrue( os.path.exists( os.path.join(tmp_dir, "dummy_builder", "dummy", "0.0.0", "dummy_builder-train.arrow"))) self.assertDictEqual(dummy_builder.info.features, Features({"text": Value("string")})) self.assertDictEqual( dummy_builder.info.post_processed.features, Features({ "text": Value("string"), "tokens": [Value("string")] }), ) self.assertEqual(dummy_builder.info.splits["train"].num_examples, 100) self.assertTrue( os.path.exists( os.path.join(tmp_dir, "dummy_builder", "dummy", "0.0.0", "dataset_info.json"))) def _post_process(self, dataset, resources_paths): return dataset.select([0, 1], keep_in_memory=True) with tempfile.TemporaryDirectory() as tmp_dir: dummy_builder = DummyBuilder(cache_dir=tmp_dir, name="dummy") dummy_builder._post_process = types.MethodType( _post_process, dummy_builder) dummy_builder.download_and_prepare(try_from_hf_gcs=False, download_mode=FORCE_REDOWNLOAD) self.assertTrue( os.path.exists( os.path.join(tmp_dir, "dummy_builder", "dummy", "0.0.0", "dummy_builder-train.arrow"))) self.assertDictEqual(dummy_builder.info.features, Features({"text": Value("string")})) self.assertIsNone(dummy_builder.info.post_processed) self.assertEqual(dummy_builder.info.splits["train"].num_examples, 100) self.assertTrue( os.path.exists( os.path.join(tmp_dir, "dummy_builder", "dummy", "0.0.0", "dataset_info.json"))) def _post_process(self, dataset, resources_paths): if os.path.exists(resources_paths["index"]): dataset.load_faiss_index("my_index", resources_paths["index"]) return dataset else: dataset = dataset.add_faiss_index_from_external_arrays( external_arrays=np.ones((len(dataset), 8)), string_factory="Flat", index_name="my_index") dataset.save_faiss_index("my_index", resources_paths["index"]) return dataset def _post_processing_resources(self, split): return {"index": "Flat-{split}.faiss".format(split=split)} with tempfile.TemporaryDirectory() as tmp_dir: dummy_builder = DummyBuilder(cache_dir=tmp_dir, name="dummy") dummy_builder._post_process = types.MethodType( _post_process, dummy_builder) dummy_builder._post_processing_resources = types.MethodType( _post_processing_resources, dummy_builder) dummy_builder.download_and_prepare(try_from_hf_gcs=False, download_mode=FORCE_REDOWNLOAD) self.assertTrue( os.path.exists( os.path.join(tmp_dir, "dummy_builder", "dummy", "0.0.0", "dummy_builder-train.arrow"))) self.assertDictEqual(dummy_builder.info.features, Features({"text": Value("string")})) self.assertIsNone(dummy_builder.info.post_processed) self.assertEqual(dummy_builder.info.splits["train"].num_examples, 100) self.assertTrue( os.path.exists( os.path.join(tmp_dir, "dummy_builder", "dummy", "0.0.0", "dataset_info.json")))
def test_as_dataset_with_post_process(self): def _post_process(self, dataset, resources_paths): def char_tokenize(example): return {"tokens": list(example["text"])} return dataset.map( char_tokenize, cache_file_name=resources_paths["tokenized_dataset"]) def _post_processing_resources(self, split): return { "tokenized_dataset": "tokenized_dataset-{split}.arrow".format(split=split) } with tempfile.TemporaryDirectory() as tmp_dir: dummy_builder = DummyBuilder(cache_dir=tmp_dir, name="dummy") dummy_builder.info.post_processed = PostProcessedInfo( features=Features({ "text": Value("string"), "tokens": [Value("string")] })) dummy_builder._post_process = types.MethodType( _post_process, dummy_builder) dummy_builder._post_processing_resources = types.MethodType( _post_processing_resources, dummy_builder) os.makedirs(dummy_builder.cache_dir) dummy_builder.info.splits = SplitDict() dummy_builder.info.splits.add(SplitInfo("train", num_examples=10)) dummy_builder.info.splits.add(SplitInfo("test", num_examples=10)) for split in dummy_builder.info.splits: writer = ArrowWriter( path=os.path.join(dummy_builder.cache_dir, f"dummy_builder-{split}.arrow"), features=Features({"text": Value("string")}), ) writer.write_batch({"text": ["foo"] * 10}) writer.finalize() writer = ArrowWriter( path=os.path.join(dummy_builder.cache_dir, f"tokenized_dataset-{split}.arrow"), features=Features({ "text": Value("string"), "tokens": [Value("string")] }), ) writer.write_batch({ "text": ["foo"] * 10, "tokens": [list("foo")] * 10 }) writer.finalize() dsets = dummy_builder.as_dataset() self.assertIsInstance(dsets, DatasetDict) self.assertListEqual(list(dsets.keys()), ["train", "test"]) self.assertEqual(len(dsets["train"]), 10) self.assertEqual(len(dsets["test"]), 10) self.assertDictEqual( dsets["train"].features, Features({ "text": Value("string"), "tokens": [Value("string")] })) self.assertDictEqual( dsets["test"].features, Features({ "text": Value("string"), "tokens": [Value("string")] })) self.assertListEqual(dsets["train"].column_names, ["text", "tokens"]) self.assertListEqual(dsets["test"].column_names, ["text", "tokens"]) del dsets dset = dummy_builder.as_dataset("train") self.assertIsInstance(dset, Dataset) self.assertEqual(dset.split, "train") self.assertEqual(len(dset), 10) self.assertDictEqual( dset.features, Features({ "text": Value("string"), "tokens": [Value("string")] })) self.assertListEqual(dset.column_names, ["text", "tokens"]) self.assertGreater(dummy_builder.info.post_processing_size, 0) self.assertGreater( dummy_builder.info.post_processed.resources_checksums["train"] ["tokenized_dataset"]["num_bytes"], 0) del dset dset = dummy_builder.as_dataset("train+test[:30%]") self.assertIsInstance(dset, Dataset) self.assertEqual(dset.split, "train+test[:30%]") self.assertEqual(len(dset), 13) self.assertDictEqual( dset.features, Features({ "text": Value("string"), "tokens": [Value("string")] })) self.assertListEqual(dset.column_names, ["text", "tokens"]) del dset def _post_process(self, dataset, resources_paths): return dataset.select([0, 1], keep_in_memory=True) with tempfile.TemporaryDirectory() as tmp_dir: dummy_builder = DummyBuilder(cache_dir=tmp_dir, name="dummy") dummy_builder._post_process = types.MethodType( _post_process, dummy_builder) os.makedirs(dummy_builder.cache_dir) dummy_builder.info.splits = SplitDict() dummy_builder.info.splits.add(SplitInfo("train", num_examples=10)) dummy_builder.info.splits.add(SplitInfo("test", num_examples=10)) for split in dummy_builder.info.splits: writer = ArrowWriter( path=os.path.join(dummy_builder.cache_dir, f"dummy_builder-{split}.arrow"), features=Features({"text": Value("string")}), ) writer.write_batch({"text": ["foo"] * 10}) writer.finalize() writer = ArrowWriter( path=os.path.join(dummy_builder.cache_dir, f"small_dataset-{split}.arrow"), features=Features({"text": Value("string")}), ) writer.write_batch({"text": ["foo"] * 2}) writer.finalize() dsets = dummy_builder.as_dataset() self.assertIsInstance(dsets, DatasetDict) self.assertListEqual(list(dsets.keys()), ["train", "test"]) self.assertEqual(len(dsets["train"]), 2) self.assertEqual(len(dsets["test"]), 2) self.assertDictEqual(dsets["train"].features, Features({"text": Value("string")})) self.assertDictEqual(dsets["test"].features, Features({"text": Value("string")})) self.assertListEqual(dsets["train"].column_names, ["text"]) self.assertListEqual(dsets["test"].column_names, ["text"]) del dsets dset = dummy_builder.as_dataset("train") self.assertIsInstance(dset, Dataset) self.assertEqual(dset.split, "train") self.assertEqual(len(dset), 2) self.assertDictEqual(dset.features, Features({"text": Value("string")})) self.assertListEqual(dset.column_names, ["text"]) del dset dset = dummy_builder.as_dataset("train+test[:30%]") self.assertIsInstance(dset, Dataset) self.assertEqual(dset.split, "train+test[:30%]") self.assertEqual(len(dset), 2) self.assertDictEqual(dset.features, Features({"text": Value("string")})) self.assertListEqual(dset.column_names, ["text"]) del dset