os.path.join(wavs_path, fn + ".wav"), wav, hp.sr) chapter += 1 except FileNotFoundError: break _convert_mp3_to_wav('01_Genesis', 1) _convert_mp3_to_wav('02_Exodus', 2) _convert_mp3_to_wav('03_Leviticus', 3) metadata_csv.close() print("total audio duration: %ss" % (time.strftime('%H:%M:%S', time.gmtime(total_duration_s)))) # pre process print("pre processing...") mb_speech = MBSpeech([]) preprocess(dataset_path, mb_speech) else: if not args.dataset: print("You must specify a dataset") sys.exit(0) dataset_name = args.dataset datasets_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'datasets') dataset_path = os.path.join(datasets_path, dataset_name) if not os.path.isdir(dataset_path): print("%s does not exist" % dataset_path) print("You should put your unprocessed dataset inside %s" % datasets_path) sys.exit(0)
import argparse from tqdm import * import numpy as np from torch.utils.data import ConcatDataset from datasets import Compose, LoadAudio, ComputeMagSpectrogram parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--dataset", choices=['librispeech', 'mbspeech', 'bolorspeech', 'backgroundsounds'], default='bolorspeech', help='dataset name') args = parser.parse_args() if args.dataset == 'mbspeech': from datasets.mb_speech import MBSpeech dataset = MBSpeech() elif args.dataset == 'librispeech': from datasets.libri_speech import LibriSpeech dataset = ConcatDataset([ LibriSpeech(name='train-clean-100'), LibriSpeech(name='train-clean-360'), LibriSpeech(name='train-other-500'), LibriSpeech(name='dev-clean',) ]) elif args.dataset == 'backgroundsounds': from datasets.background_sounds import BackgroundSounds dataset = BackgroundSounds(is_random=False) elif args.dataset == 'bolorspeech': from datasets.bolor_speech import BolorSpeech dataset = ConcatDataset([ BolorSpeech(name='train'),