Esempio n. 1
0
    def test_format_of_x(self):
        dataset = SequencesDataset()
        x, y = dataset[0]

        self.assertIsInstance(x, torch.FloatTensor)
        self.assertEqual(len(x.shape), 2)
        self.assertGreater(x.shape[0], 8)
        self.assertEqual(x.shape[1], 1)
    def test_train_one_epoch(self):
        dataset = SequencesDataset(set_size=10)

        mean_loss = self.interface.train_one_epoch(dataset,
                                                   weight_decay=0,
                                                   learning_rate=0.02,
                                                   shuffle=False)

        self.assertIsInstance(mean_loss, float)
    def test_performance_on_samples(self):
        dataset = SequencesDataset(set_size=10)

        performance = self.interface.performance_on_samples(dataset)
        sample = performance[0]
        # raw_sample = dataset[0]

        self.assertIsInstance(sample.x, torch.FloatTensor)
        self.assertEqual(len(sample.x.shape), 2)
        self.assertGreater(sample.x.shape[0], 8)
        self.assertEqual(sample.x.shape[1], 1)

        self.assertIsInstance(sample.loss, float)
        self.assertIsInstance(sample.actual_y, float)
        self.assertIsInstance(sample.predicted_y, float)
    def test___preprocessed_batch__(self):
        batch_size = 5
        batch = SequencesDataset(set_size=batch_size)[:batch_size]

        x, y, normalization_factors, normalization_offsets = self.interface.__preprocessed_batch__(
            batch)

        self.assertIsInstance(x, torch.nn.utils.rnn.PackedSequence)
        x_unpacked, x_lengths = torch.nn.utils.rnn.pad_packed_sequence(
            x, batch_first=True)
        self.assertEqual(x_unpacked.shape[0], batch_size)
        self.assertGreater(x_unpacked.shape[1], 8)
        self.assertEqual(x_unpacked.shape[2], 1)

        self.assertIsInstance(y, torch.FloatTensor)
        # y_unpacked, y_lengths = torch.nn.utils.rnn.pad_packed_sequence(y, batch_first=True)
        self.assertEqual(y.shape, (batch_size, 1))
        self.assertFalse(y.requires_grad)

        self.assertIsInstance(normalization_factors, torch.FloatTensor)
        self.assertEqual(normalization_factors.shape, (batch_size, ))

        self.assertIsInstance(normalization_offsets, torch.FloatTensor)
        self.assertEqual(normalization_offsets.shape, (batch_size, ))
Esempio n. 5
0
 def test___len__(self):
     dataset = SequencesDataset()
     self.assertEqual(len(dataset), 50000)
Esempio n. 6
0
    def test_format_of_y(self):
        dataset = SequencesDataset()
        x, y = dataset[0]

        self.assertIsInstance(y, torch.FloatTensor)
        self.assertEqual(y.shape, (1, 1))
Esempio n. 7
0
 def test___getitem__(self):
     dataset = SequencesDataset()
     samples = dataset[:2]
     self.assertIsInstance(samples[0], tuple)
     self.assertIsInstance(samples[1], tuple)
Esempio n. 8
0
import dataset_parties
from datasets.sequences_dataset import SequencesDataset

dataset = SequencesDataset()

train_set, dev_set, test_set = dataset_parties.ng_style(dataset)
    def test_performance_on_set(self):
        dataset = SequencesDataset(set_size=10)

        performance = self.interface.performance_on_set(dataset)

        self.assertIsInstance(performance, float)