def test21(): print("Simulation: ST FuzzyDHondtDirectOptimize") jobID: str = "Roulette1" selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 3}) pProbToolOLin0802HLin1002: APenalization = PenalizationToolDefinition.exportProbPenaltyToolOStat08HLin1002( InputSimulatorDefinition.numberOfAggrItems) rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs() pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription( "FuzzyDHondtDirectOptimize" + jobID, rIDs, rDescs, InputAggrDefinition.exportADescDHondtDirectOptimizeThompsonSamplingINF( selector, pProbToolOLin0802HLin1002, "DCG")) batchID: str = "stDiv90Ulinear0109R1" dataset: DatasetST = DatasetST.readDatasets() behaviourFile: str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109) behavioursDF: DataFrame = BehavioursST.readFromFileST(behaviourFile) model: DataFrame = PModelDHondtBanditsVotes(pDescr.getRecommendersIDs()) #lrClick:float = 0.03 #lrView:float = lrClick / 500 #eTool:AEvalTool = EvalToolDHondt({EvalToolDHondt.ARG_LEARNING_RATE_CLICKS: lrClick, # EvalToolDHondt.ARG_LEARNING_RATE_VIEWS: lrView}) eTool: AEvalTool = EvalToolDHondtBanditVotes({}) # simulation of portfolio simulator: Simulator = Simulator(batchID, SimulationST, argsSimulationDict, dataset, behavioursDF) simulator.simulate([pDescr], [model], [eTool], [HistoryHierDF(pDescr.getPortfolioID())])
def test21(): print("Simulation: ST DHontThompsonSampling") jobID: str = "Roulette1" selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1}) rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs() pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription( "DHontThompsonSampling" + jobID, rIDs, rDescs, InputAggrDefinition.exportADescDHondtThompsonSampling(selector)) batchID: str = "stDiv90Ulinear0109R1" dataset: DatasetST = DatasetST.readDatasets() behaviourFile: str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109) behavioursDF: DataFrame = BehavioursST.readFromFileST(behaviourFile) model: DataFrame = PModelDHondtBanditsVotes(pDescr.getRecommendersIDs()) print(model) evalTool: AEvalTool = EvalToolDHondtBanditVotes({}) # simulation of portfolio simulator: Simulator = Simulator(batchID, SimulationST, argsSimulationDict, dataset, behavioursDF) simulator.simulate([pDescr], [model], [evalTool], [HistoryHierDF(pDescr.getPortfolioID())])
def exportSimulatorSlantour(self, batchID: str, divisionDatasetPercentualSize: int, uBehaviourID: str, repetition: int): argsSimulationDict: dict = { SimulationML.ARG_WINDOW_SIZE: 5, SimulationML.ARG_RECOM_REPETITION_COUNT: repetition, SimulationML.ARG_NUMBER_OF_RECOMM_ITEMS: 100, SimulationML.ARG_NUMBER_OF_AGGR_ITEMS: self.numberOfAggrItems, SimulationML.ARG_DIV_DATASET_PERC_SIZE: divisionDatasetPercentualSize, SimulationML.ARG_HISTORY_LENGTH: 10 } # dataset reading dataset: ADataset = DatasetST.readDatasets() behaviourFile: str = BehavioursST.getFile(uBehaviourID) behavioursDF: DataFrame = BehavioursST.readFromFileST(behaviourFile) # simulation of portfolio simulator: Simulator = Simulator(batchID, SimulationST, argsSimulationDict, dataset, behavioursDF) return simulator
def test21(): print("Simulation: ST ContextDHondtINF") jobID: str = "Roulette1" selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1}) #pProbToolOLin0802HLin1002:APenalization = PenalizationToolDefinition.exportProbPenaltyToolOStat08HLin1002( # InputSimulatorDefinition.numberOfAggrItems) pToolOLin0802HLin1002: APenalization = PenalizationToolDefinition.exportPenaltyToolOLin0802HLin1002( InputSimulatorDefinition.numberOfAggrItems) rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs() dataset: ADataset = DatasetST.readDatasets() events = dataset.eventsDF serials = dataset.serialsDF historyDF: AHistory = HistoryDF("test01") # Init evalTool evalTool: AEvalTool = EvalToolContext({ EvalToolContext.ARG_ITEMS: serials, # ITEMS EvalToolContext.ARG_EVENTS: events, # EVENTS (FOR CALCULATING HISTORY OF USER) EvalToolContext.ARG_DATASET: "st", # WHAT DATASET ARE WE IN EvalToolContext.ARG_HISTORY: historyDF }) # empty instance of AHistory is OK for ST dataset pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription( "ContextDHondtNIF" + jobID, rIDs, rDescs, InputAggrDefinition.exportADescDContextHondtINF( selector, pToolOLin0802HLin1002, evalTool)) batchID: str = "stDiv90Ulinear0109R1" dataset: DatasetST = DatasetST.readDatasets() behaviourFile: str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109) behavioursDF: DataFrame = BehavioursST.readFromFileST(behaviourFile) model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs()) print(model) # simulation of portfolio simulator: Simulator = Simulator(batchID, SimulationST, argsSimulationDict, dataset, behavioursDF) simulator.simulate([pDescr], [model], [evalTool], [HistoryHierDF(pDescr.getPortfolioID())])
def test26(): print("Simulation: ST VMCMF") rDescr:RecommenderDescription = InputRecomSTDefinition.exportRDescVMContextKNN() pDescr:APortfolioDescription = Portfolio1MethDescription(InputRecomSTDefinition.VMC_KNN.title(), InputRecomSTDefinition.VMC_KNN, rDescr) batchID:str = "slantourDiv90Ulinear0109R1" dataset:DatasetST = DatasetST.readDatasets() behaviourFile:str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109) behavioursDF:DataFrame = BehavioursST.readFromFileST(behaviourFile) # simulation of portfolio simulator:Simulator = Simulator(batchID, SimulationST, argsSimulationDict, dataset, behavioursDF) simulator.simulate([pDescr], [DataFrame()], [EToolDoNothing({})], [HistoryHierDF(pDescr.getPortfolioID())])
def test24(): print("Simulation: ST CB") rDescr:RecommenderDescription = InputRecomMLDefinition.exportRDescCosineCBcbdOHEupsweightedMeanups3() pDescr:APortfolioDescription = Portfolio1MethDescription(InputRecomMLDefinition.COS_CB_MEAN.title(), InputRecomMLDefinition.COS_CB_MEAN, rDescr) batchID:str = "slantourDiv90Ulinear0109R1" dataset:DatasetST = DatasetST.readDatasets() behaviourFile:str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109) behavioursDF:DataFrame = BehavioursST.readFromFileST(behaviourFile) # simulation of portfolio simulator:Simulator = Simulator(batchID, SimulationST, argsSimulationDict, dataset, behavioursDF) simulator.simulate([pDescr], [DataFrame()], [EToolDoNothing({})], [HistoryHierDF(pDescr.getPortfolioID())])
def test21(): print("Simulation: ST FuzzyDHondt") jobID: str = "Roulette1" selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1}) rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs() pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription( "FuzzyDHondt" + jobID, rIDs, rDescs, InputAggrDefinition.exportADescDHondt(selector)) batchID: str = "stDiv90Ulinear0109R1" dataset: DatasetST = DatasetST.readDatasets() behaviourFile: str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109) behavioursDF: DataFrame = BehavioursST.readFromFileST(behaviourFile) model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs()) print(model) lrClick: float = 0.1 lrView: float = lrClick / 300 evalTool: AEvalTool = EvalToolDHondt({ EvalToolDHondt.ARG_LEARNING_RATE_CLICKS: lrClick, EvalToolDHondt.ARG_LEARNING_RATE_VIEWS: lrView }) # simulation of portfolio simulator: Simulator = Simulator(batchID, SimulationST, argsSimulationDict, dataset, behavioursDF) simulator.simulate([pDescr], [model], [evalTool], [HistoryHierDF(pDescr.getPortfolioID())])