def parse_args(): """Parse command line arguments.""" # Testing settings TEST_DATA = DATASET_NAMES[3] # max 8 data_inf = dataset_info(TEST_DATA) parser = argparse.ArgumentParser(description='DexiNed trainer.') # Data parameters parser.add_argument('--input_dir', type=str, default='/opt/dataset/BIPED/edges', help='the path to the directory with the input data.') parser.add_argument( '--input_val_dir', type=str, default=data_inf['data_dir'], help='the path to the directory with the input data for validation.') parser.add_argument('--output_dir', type=str, default='checkpoints', help='the path to output the results.') parser.add_argument('--test_data', type=str, choices=DATASET_NAMES, default=TEST_DATA, help='Name of the dataset.') parser.add_argument('--test_list', type=str, default=data_inf['file_name'], help='Dataset sample indices list.') parser.add_argument('--is_testing', type=bool, default=False, help='Put script in testing mode.') # parser.add_argument('--use_prev_trained', # type=bool, # default=True, # help='use previous trained data') # Just for test parser.add_argument( '--checkpoint_data', type=str, default='24/24_model.pth', help='Checkpoint path from which to restore model weights from.') parser.add_argument('--test_img_width', type=int, default=data_inf['img_width'], help='Image width for testing.') parser.add_argument('--test_img_height', type=int, default=data_inf['img_height'], help='Image height for testing.') parser.add_argument('--res_dir', type=str, default='result', help='Result directory') parser.add_argument( '--log_interval_vis', type=int, default=50, help='The number of batches to wait before printing test predictions.') # Optimization parameters # parser.add_argument('--optimizer', # type=str, # choices=['adam', 'sgd'], # default='adam', # help='The optimizer to use (default: adam).') parser.add_argument('--epochs', type=int, default=25, metavar='N', help='Number of training epochs (default: 25).') parser.add_argument('--lr', default=1e-4, type=float, help='Initial learning rate.') parser.add_argument('--wd', type=float, default=1e-4, metavar='WD', help='weight decay (default: 1e-4)') # parser.add_argument('--lr_stepsize', # default=1e4, # type=int, # help='Learning rate step size.') parser.add_argument('--batch_size', type=int, default=8, metavar='B', help='the mini-batch size (default: 8)') parser.add_argument('--workers', default=8, type=int, help='The number of workers for the dataloaders.') parser.add_argument('--tensorboard', type=bool, default=True, help='Use Tensorboard for logging.'), parser.add_argument('--img_width', type=int, default=400, help='Image width for training.') parser.add_argument('--img_height', type=int, default=400, help='Image height for training.') parser.add_argument('--channel_swap', default=[2, 1, 0], type=int) parser.add_argument( '--crop_img', default=False, type=bool, help= 'If true crop training images, else resize images to match image width and height.' ) parser.add_argument( '--mean_pixel_values', default=[103.939, 116.779, 123.68, 137.86], type=float ) # [103.939,116.779,123.68] [104.00699, 116.66877, 122.67892] args = parser.parse_args() return args
def parse_args(): """Parse command line arguments.""" parser = argparse.ArgumentParser(description='DexiNed trainer.') parser.add_argument( '--choose_test_data', type=int, default=-1, help='Already set the dataset for testing choice: 0 - 8') # ----------- test -------0-- TEST_DATA = DATASET_NAMES[parser.parse_args().choose_test_data] # max 8 data_inf = dataset_info(TEST_DATA, is_linux=IS_LINUX) test_dir = data_inf['data_dir'] is_testing = True # current test _bdcnlossNew256-sd7-1.10.4p5 # Training settings TRAIN_DATA = DATASET_NAMES[0] # BIPED=0 train_info = dataset_info(TRAIN_DATA, is_linux=IS_LINUX) train_dir = train_info['data_dir'] # Data parameters parser.add_argument('--input_dir', type=str, default=train_dir, help='the path to the directory with the input data.') parser.add_argument( '--input_val_dir', type=str, default=data_inf['data_dir'], help='the path to the directory with the input data for validation.') parser.add_argument('--output_dir', type=str, default='checkpoints', help='the path to output the results.') parser.add_argument('--train_data', type=str, choices=DATASET_NAMES, default=TRAIN_DATA, help='Name of the dataset.') parser.add_argument('--test_data', type=str, choices=DATASET_NAMES, default=TEST_DATA, help='Name of the dataset.') parser.add_argument('--test_list', type=str, default=data_inf['test_list'], help='Dataset sample indices list.') parser.add_argument('--is_testing', type=bool, default=is_testing, help='Script in testing mode.') parser.add_argument( '--double_img', type=bool, default=False, help='True: use same 2 imgs changing channels') # Just for test parser.add_argument('--resume', type=bool, default=False, help='use previous trained data') # Just for test parser.add_argument( '--checkpoint_data', type=str, default='19/19_model.pth', help='Checkpoint path from which to restore model weights from.') parser.add_argument('--test_img_width', type=int, default=data_inf['img_width'], help='Image width for testing.') parser.add_argument('--test_img_height', type=int, default=data_inf['img_height'], help='Image height for testing.') parser.add_argument('--res_dir', type=str, default='result', help='Result directory') parser.add_argument( '--log_interval_vis', type=int, default=50, help='The number of batches to wait before printing test predictions.') parser.add_argument('--epochs', type=int, default=25, metavar='N', help='Number of training epochs (default: 25).') parser.add_argument('--lr', default=1e-4, type=float, help='Initial learning rate.') parser.add_argument('--wd', type=float, default=1e-4, metavar='WD', help='weight decay (default: 1e-4)') # parser.add_argument('--lr_stepsize', # default=1e4, # type=int, # help='Learning rate step size.') parser.add_argument('--batch_size', type=int, default=8, metavar='B', help='the mini-batch size (default: 8)') parser.add_argument('--workers', default=8, type=int, help='The number of workers for the dataloaders.') parser.add_argument('--tensorboard', type=bool, default=True, help='Use Tensorboard for logging.'), parser.add_argument('--img_width', type=int, default=400, help='Image width for training.') parser.add_argument('--img_height', type=int, default=400, help='Image height for training.') parser.add_argument('--channel_swap', default=[2, 1, 0], type=int) parser.add_argument( '--crop_img', default=True, type=bool, help= 'If true crop training images, else resize images to match image width and height.' ) parser.add_argument( '--mean_pixel_values', default=[103.939, 116.779, 123.68, 137.86], type=float ) # [103.939,116.779,123.68] [104.00699, 116.66877, 122.67892] args = parser.parse_args() return args